Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner  Is a corresponding author
  13. Thomas Graf  Is a corresponding author
  1. Center for Genomic Regulation, Spain
  2. Harvard University, United States
  3. Centro Nacional de Análisis Genómico, Spain
  4. Centro Nacional d'Anàlisi Genòmica, Spain

Abstract

Forced transcription factor expression can transdifferentiate somatic cells into other specialized cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.

Data availability

Single cell gene expression data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) under accession number GSE112004

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mirko Francesconi

    Systems Biology Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Bruno Di Stefano

    Department of Stem Cell and Regenerative Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2532-3087
  3. Clara Berenguer

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Luisa de Andrés-Aguayo

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Marcos Plana-Carmona

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1976-7506
  6. Maria Mendez-Lago

    Centre for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Amy Guillaumet-Adkins

    Centre for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Gustavo Rodriguez-Esteban

    Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Gut

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivo G Gut

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7219-632X
  11. Holger Heyn

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Ben Lehner

    Systems Biology Program, Center for Genomic Regulation, Barcelona, Spain
    For correspondence
    lehner.ben@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124
  13. Thomas Graf

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    For correspondence
    Thomas.Graf@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2774-4117

Funding

H2020 European Research Council

  • Thomas Graf

H2020 European Research Council

  • Ben Lehner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris P Ponting, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: The protocol was approved by the Committee on the Ethics of Animal Experiments of the Generalitat de Catalunya (Permit Number: JMC-071001P3). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: September 1, 2018
  2. Accepted: March 11, 2019
  3. Accepted Manuscript published: March 12, 2019 (version 1)
  4. Accepted Manuscript updated: March 21, 2019 (version 2)
  5. Version of Record published: March 26, 2019 (version 3)

Copyright

© 2019, Francesconi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,192
    views
  • 1,229
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner
  13. Thomas Graf
(2019)
Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming
eLife 8:e41627.
https://doi.org/10.7554/eLife.41627

Share this article

https://doi.org/10.7554/eLife.41627

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.