1. Computational and Systems Biology
  2. Stem Cells and Regenerative Medicine
Download icon

Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner  Is a corresponding author
  13. Thomas Graf  Is a corresponding author
  1. Center for Genomic Regulation, Spain
  2. Harvard University, United States
  3. Centro Nacional de Análisis Genómico, Spain
  4. Centro Nacional d'Anàlisi Genòmica, Spain
Research Article
  • Cited 13
  • Views 6,310
  • Annotations
Cite this article as: eLife 2019;8:e41627 doi: 10.7554/eLife.41627

Abstract

Forced transcription factor expression can transdifferentiate somatic cells into other specialized cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.

Article and author information

Author details

  1. Mirko Francesconi

    Systems Biology Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Bruno Di Stefano

    Department of Stem Cell and Regenerative Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2532-3087
  3. Clara Berenguer

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Luisa de Andrés-Aguayo

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Marcos Plana-Carmona

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1976-7506
  6. Maria Mendez-Lago

    Centre for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Amy Guillaumet-Adkins

    Centre for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Gustavo Rodriguez-Esteban

    Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Gut

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivo G Gut

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7219-632X
  11. Holger Heyn

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Ben Lehner

    Systems Biology Program, Center for Genomic Regulation, Barcelona, Spain
    For correspondence
    lehner.ben@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124
  13. Thomas Graf

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    For correspondence
    Thomas.Graf@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2774-4117

Funding

H2020 European Research Council

  • Thomas Graf

H2020 European Research Council

  • Ben Lehner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The protocol was approved by the Committee on the Ethics of Animal Experiments of the Generalitat de Catalunya (Permit Number: JMC-071001P3). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Chris P Ponting, University of Edinburgh, United Kingdom

Publication history

  1. Received: September 1, 2018
  2. Accepted: March 11, 2019
  3. Accepted Manuscript published: March 12, 2019 (version 1)
  4. Accepted Manuscript updated: March 21, 2019 (version 2)
  5. Version of Record published: March 26, 2019 (version 3)

Copyright

© 2019, Francesconi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,310
    Page views
  • 951
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Amit Frishberg et al.
    Research Article Updated

    Human diseases arise in a complex ecosystem composed of disease mechanisms and the whole-body state. However, the precise nature of the whole-body state and its relations with disease remain obscure. Here we map similarities among clinical parameters in normal physiological settings, including a large collection of metabolic, hemodynamic, and immune parameters, and then use the mapping to dissect phenotypic states. We find that the whole-body state is faithfully represented by a quantitative two-dimensional model. One component of the whole-body state represents ‘metabolic syndrome’ (MetS) – a conventional way to determine the cardiometabolic state. The second component is decoupled from the classical MetS, suggesting a novel ‘non-classical MetS’ that is characterized by dozens of parameters, including dysregulated lipoprotein parameters (e.g. low free cholesterol in small high-density lipoproteins) and attenuated cytokine responses of immune cells to ex vivo stimulations. Both components are associated with disease, but differ in their particular associations, thus opening new avenues for improved personalized diagnosis and treatment. These results provide a practical paradigm to describe whole-body states and to dissect complex disease within the ecosystem of the human body.

    1. Computational and Systems Biology
    2. Neuroscience
    Shivesh Chaudhary et al.
    Research Article

    Although identifying cell names in dense image stacks is critical in analyzing functional whole-brain data enabling comparison across experiments, unbiased identification is very difficult, and relies heavily on researchers' experiences. Here we present a probabilistic-graphical-model framework, CRF_ID, based on Conditional Random Fields, for unbiased and automated cell identification. CRF_ID focuses on maximizing intrinsic similarity between shapes. Compared to existing methods, CRF_ID achieves higher accuracy on simulated and ground-truth experimental datasets, and better robustness against challenging noise conditions common in experimental data. CRF_ID can further boost accuracy by building atlases from annotated data in highly computationally efficient manner, and by easily adding new features (e.g. from new strains). We demonstrate cell annotation in C. elegans images across strains, animal orientations, and tasks including gene-expression localization, multi-cellular and whole-brain functional imaging experiments. Together, these successes demonstrate that unbiased cell annotation can facilitate biological discovery, and this approach may be valuable to annotation tasks for other systems.