Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner  Is a corresponding author
  13. Thomas Graf  Is a corresponding author
  1. Center for Genomic Regulation, Spain
  2. Harvard University, United States
  3. Centro Nacional de Análisis Genómico, Spain
  4. Centro Nacional d'Anàlisi Genòmica, Spain

Abstract

Forced transcription factor expression can transdifferentiate somatic cells into other specialized cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.

Data availability

Single cell gene expression data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) under accession number GSE112004

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mirko Francesconi

    Systems Biology Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Bruno Di Stefano

    Department of Stem Cell and Regenerative Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2532-3087
  3. Clara Berenguer

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Luisa de Andrés-Aguayo

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Marcos Plana-Carmona

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1976-7506
  6. Maria Mendez-Lago

    Centre for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Amy Guillaumet-Adkins

    Centre for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Gustavo Rodriguez-Esteban

    Center for Genomic Regulation, Centro Nacional de Análisis Genómico, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Gut

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivo G Gut

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7219-632X
  11. Holger Heyn

    Center for Genomic Regulation, Centro Nacional d'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Ben Lehner

    Systems Biology Program, Center for Genomic Regulation, Barcelona, Spain
    For correspondence
    lehner.ben@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124
  13. Thomas Graf

    Gene Regulation, Stem Cells and Cancer Program, Center for Genomic Regulation, Barcelona, Spain
    For correspondence
    Thomas.Graf@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2774-4117

Funding

H2020 European Research Council

  • Thomas Graf

H2020 European Research Council

  • Ben Lehner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris P Ponting, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: The protocol was approved by the Committee on the Ethics of Animal Experiments of the Generalitat de Catalunya (Permit Number: JMC-071001P3). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: September 1, 2018
  2. Accepted: March 11, 2019
  3. Accepted Manuscript published: March 12, 2019 (version 1)
  4. Accepted Manuscript updated: March 21, 2019 (version 2)
  5. Version of Record published: March 26, 2019 (version 3)

Copyright

© 2019, Francesconi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,099
    Page views
  • 1,223
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner
  13. Thomas Graf
(2019)
Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming
eLife 8:e41627.
https://doi.org/10.7554/eLife.41627

Share this article

https://doi.org/10.7554/eLife.41627

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.

    1. Computational and Systems Biology
    2. Neuroscience
    Domingos Leite de Castro, Miguel Aroso ... Paulo Aguiar
    Research Article Updated

    Closed-loop neuronal stimulation has a strong therapeutic potential for neurological disorders such as Parkinson’s disease. However, at the moment, standard stimulation protocols rely on continuous open-loop stimulation and the design of adaptive controllers is an active field of research. Delayed feedback control (DFC), a popular method used to control chaotic systems, has been proposed as a closed-loop technique for desynchronisation of neuronal populations but, so far, was only tested in computational studies. We implement DFC for the first time in neuronal populations and access its efficacy in disrupting unwanted neuronal oscillations. To analyse in detail the performance of this activity control algorithm, we used specialised in vitro platforms with high spatiotemporal monitoring/stimulating capabilities. We show that the conventional DFC in fact worsens the neuronal population oscillatory behaviour, which was never reported before. Conversely, we present an improved control algorithm, adaptive DFC (aDFC), which monitors the ongoing oscillation periodicity and self-tunes accordingly. aDFC effectively disrupts collective neuronal oscillations restoring a more physiological state. Overall, these results support aDFC as a better candidate for therapeutic closed-loop brain stimulation.