Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner  Is a corresponding author
  13. Thomas Graf  Is a corresponding author
  1. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Spain
  2. Harvard University, United States

Abstract

Forced transcription factor expression can transdifferentiate somatic cells into other specialized cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.

Data availability

Single cell gene expression data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) under accession number GSE112004

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mirko Francesconi

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Bruno Di Stefano

    Department of Stem Cell and Regenerative Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2532-3087
  3. Clara Berenguer

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Luisa de Andrés-Aguayo

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Marcos Plana-Carmona

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1976-7506
  6. Maria Mendez-Lago

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Amy Guillaumet-Adkins

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Gustavo Rodriguez-Esteban

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Gut

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivo G Gut

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7219-632X
  11. Holger Heyn

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Ben Lehner

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    lehner.ben@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124
  13. Thomas Graf

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    Thomas.Graf@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2774-4117

Funding

H2020 European Research Council

  • Thomas Graf

H2020 European Research Council

  • Ben Lehner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris P Ponting, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: The protocol was approved by the Committee on the Ethics of Animal Experiments of the Generalitat de Catalunya (Permit Number: JMC-071001P3). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: September 1, 2018
  2. Accepted: March 11, 2019
  3. Accepted Manuscript published: March 12, 2019 (version 1)
  4. Accepted Manuscript updated: March 21, 2019 (version 2)
  5. Version of Record published: March 26, 2019 (version 3)

Copyright

© 2019, Francesconi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,107
    views
  • 1,223
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner
  13. Thomas Graf
(2019)
Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming
eLife 8:e41627.
https://doi.org/10.7554/eLife.41627

Share this article

https://doi.org/10.7554/eLife.41627

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.