1. Computational and Systems Biology
  2. Stem Cells and Regenerative Medicine
Download icon

Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming

  1. Mirko Francesconi
  2. Bruno Di Stefano
  3. Clara Berenguer
  4. Luisa de Andrés-Aguayo
  5. Marcos Plana-Carmona
  6. Maria Mendez-Lago
  7. Amy Guillaumet-Adkins
  8. Gustavo Rodriguez-Esteban
  9. Marta Gut
  10. Ivo G Gut
  11. Holger Heyn
  12. Ben Lehner  Is a corresponding author
  13. Thomas Graf  Is a corresponding author
  1. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Spain
  2. Harvard University, United States
Research Article
  • Cited 18
  • Views 7,434
  • Annotations
Cite this article as: eLife 2019;8:e41627 doi: 10.7554/eLife.41627

Abstract

Forced transcription factor expression can transdifferentiate somatic cells into other specialized cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.

Data availability

Single cell gene expression data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) under accession number GSE112004

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mirko Francesconi

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Bruno Di Stefano

    Department of Stem Cell and Regenerative Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2532-3087
  3. Clara Berenguer

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Luisa de Andrés-Aguayo

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Marcos Plana-Carmona

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1976-7506
  6. Maria Mendez-Lago

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Amy Guillaumet-Adkins

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Gustavo Rodriguez-Esteban

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Gut

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivo G Gut

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7219-632X
  11. Holger Heyn

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Ben Lehner

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    lehner.ben@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8817-1124
  13. Thomas Graf

    Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
    For correspondence
    Thomas.Graf@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2774-4117

Funding

H2020 European Research Council

  • Thomas Graf

H2020 European Research Council

  • Ben Lehner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The protocol was approved by the Committee on the Ethics of Animal Experiments of the Generalitat de Catalunya (Permit Number: JMC-071001P3). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Chris P Ponting, University of Edinburgh, United Kingdom

Publication history

  1. Received: September 1, 2018
  2. Accepted: March 11, 2019
  3. Accepted Manuscript published: March 12, 2019 (version 1)
  4. Accepted Manuscript updated: March 21, 2019 (version 2)
  5. Version of Record published: March 26, 2019 (version 3)

Copyright

© 2019, Francesconi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,434
    Page views
  • 1,067
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    András Ecker et al.
    Research Article

    Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples; SWRs) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.

    1. Computational and Systems Biology
    2. Medicine
    James A Timmons et al.
    Short Report

    Insulin resistance (IR) contributes to the pathophysiology of diabetes, dementia, viral infection, and cardiovascular disease. Drug repurposing (DR) may identify treatments for IR; however, barriers include uncertainty whether in vitro transcriptomic assays yield quantitative pharmacological data, or how to optimise assay design to best reflect in vivo human disease. We developed a clinical-based human tissue IR signature by combining lifestyle-mediated treatment responses (>500 human adipose and muscle biopsies) with biomarkers of disease status (fasting IR from >1200 biopsies). The assay identified a chemically diverse set of >130 positively acting compounds, highly enriched in true positives, that targeted 73 proteins regulating IR pathways. Our multi-gene RNA assay score reflected the quantitative pharmacological properties of a set of epidermal growth factor receptor-related tyrosine kinase inhibitors, providing insight into drug target specificity; an observation supported by deep learning-based genome-wide predicted pharmacology. Several drugs identified are suitable for evaluation in patients, particularly those with either acute or severe chronic IR.