Abstract

Understanding the relationships between different properties of data, such as whether a genome or connectome has information about disease status, is increasingly important. While existing approaches can test whether two properties are related, they may require unfeasibly large sample sizes and often are not interpretable. Our approach, 'Multiscale Graph Correlation' (MGC), is a dependence test that juxtaposes disparate data science techniques, including k-nearest neighbors, kernel methods, and multiscale analysis. Other methods may require double or triple the number of samples to achieve the same statistical power as MGC in a benchmark suite including high-dimensional and nonlinear relationships, with dimensionality ranging from 1 to 1000. Moreover, MGC uniquely characterizes the latent geometry underlying the relationship, while maintaining computational efficiency. In real data, including brain imaging and cancer genetics, MGC detects the presence of a dependency and provides guidance for the next experiments to conduct.

Data availability

To facilitate reproducibility, we make all datasets available from: https://github.com/neurodata/MGC-paper/tree/master/Data/Preprocessed

Article and author information

Author details

  1. Joshua T Vogelstein

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    jovo@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2487-6237
  2. Eric W Bridgeford

    Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qing Wang

    Department of Oncology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carey E Priebe

    Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mauro Maggioni

    Department of Mathematics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cencheng Shen

    Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Child Mind Institute Endeavor Scientist Program

  • Joshua T Vogelstein

National Science Foundation

  • Joshua T Vogelstein

Defense Advanced Research Projects Agency

  • Joshua T Vogelstein

Office of Naval Research

  • Joshua T Vogelstein

Air Force Office of Scientific Research

  • Joshua T Vogelstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dane Taylor, University of Buffalo, United States

Version history

  1. Received: September 3, 2018
  2. Accepted: January 14, 2019
  3. Accepted Manuscript published: January 15, 2019 (version 1)
  4. Version of Record published: February 22, 2019 (version 2)

Copyright

© 2019, Vogelstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,522
    views
  • 419
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua T Vogelstein
  2. Eric W Bridgeford
  3. Qing Wang
  4. Carey E Priebe
  5. Mauro Maggioni
  6. Cencheng Shen
(2019)
Discovering and deciphering relationships across disparate data modalities
eLife 8:e41690.
https://doi.org/10.7554/eLife.41690

Share this article

https://doi.org/10.7554/eLife.41690

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.