Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis

Abstract

Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis.

Data availability

Source data file has been provided for Fig 7. All raw data are available on the Dryad Digital Repository (https://doi.org/10.5061/dryad.6b604g8).

The following data sets were generated

Article and author information

Author details

  1. Alenka Guček

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4453-1498
  2. Nikhil R Gandasi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Muhmmad Omar-Hmeadi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8893-7348
  4. Marit Bakke

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Stein O Døskeland

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Anders Tengholm

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4508-0836
  7. Sebastian Barg

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    sebastian.barg@mcb.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4661-5724

Funding

Swedish Research Council (2014-02575)

  • Anders Tengholm
  • Sebastian Barg

Norwegian Research Council

  • Marit Bakke

Helse-Bergen

  • Marit Bakke

Olga Jönssons stipend

  • Alenka Guček

P O Zetterlingsstiftelse

  • Alenka Guček

Swedish Research Council (2017-00956)

  • Anders Tengholm
  • Sebastian Barg

Swedich Research Council (2018-02871)

  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Anders Tengholm
  • Sebastian Barg

Diabetes Wellness Network Sweden

  • Anders Tengholm
  • Sebastian Barg

Swedish Diabetes Society

  • Anders Tengholm
  • Sebastian Barg

Swedish Society for Medical Research

  • Nikhil R Gandasi

Hjärnfonden

  • Sebastian Barg

NovoNordisk

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

Family Ernfors Foundation

  • Alenka Guček
  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with European and Swedish legislation, fundamental ethical principles and approved by the Regional Ethics Board Uppsala (license number 31, 1-32).

Copyright

© 2019, Guček et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.41711

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article Updated

    Distal appendages are ninefold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for the formation of the primary cilium, by regulating at least four critical steps: preciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here, we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in the RAB34+ vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    2. Medicine
    Slaven Crnkovic, Helene Thekkekara Puthenparampil ... Grazyna Kwapiszewska
    Research Article

    Background:

    Pulmonary vascular remodeling is a progressive pathological process characterized by functional alterations within pulmonary artery smooth muscle cells (PASMCs) and adventitial fibroblasts (PAAFs). Mechanisms driving the transition to a diseased phenotype remain elusive.

    Methods:

    We combined transcriptomic and proteomic profiling with phenotypic characterization of source-matched cells from healthy controls and individuals with idiopathic pulmonary arterial hypertension (IPAH). Bidirectional cellular crosstalk was examined using direct and indirect co-culture models, and phenotypic responses were assessed via transcriptome analysis.

    Results:

    PASMC and PAAF undergo distinct phenotypic shifts during pulmonary vascular remodeling, with limited shared features, such as reduced mitochondrial content and hyperpolarization. IPAH-PASMC exhibit increased glycosaminoglycan production and downregulation of contractile machinery, while IPAH-PAAF display a hyperproliferative phenotype. We identified alterations in extracellular matrix components, including laminin and collagen, alongside pentraxin-3 and hepatocyte growth factor, as potential regulators of PASMC phenotypic transitions mediated by PAAF.

    Conclusions:

    While PASMCs and PAAFs retain their core cellular identities, they acquire distinct disease-associated states. These findings provide new insights into the dynamic interplay of pulmonary vascular mesenchymal cells in disease pathogenesis.

    Funding:

    This work was supported by Cardio-Pulmonary Institute EXC 2026 390649896 (GK) and Austrian Science Fund (FWF) grant I 4651-B (SC).