Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis

Abstract

Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis.

Data availability

Source data file has been provided for Fig 7. All raw data are available on the Dryad Digital Repository (https://doi.org/10.5061/dryad.6b604g8).

The following data sets were generated

Article and author information

Author details

  1. Alenka Guček

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4453-1498
  2. Nikhil R Gandasi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Muhmmad Omar-Hmeadi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8893-7348
  4. Marit Bakke

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Stein O Døskeland

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Anders Tengholm

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4508-0836
  7. Sebastian Barg

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    sebastian.barg@mcb.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4661-5724

Funding

Swedish Research Council (2014-02575)

  • Anders Tengholm
  • Sebastian Barg

Norwegian Research Council

  • Marit Bakke

Helse-Bergen

  • Marit Bakke

Olga Jönssons stipend

  • Alenka Guček

P O Zetterlingsstiftelse

  • Alenka Guček

Swedish Research Council (2017-00956)

  • Anders Tengholm
  • Sebastian Barg

Swedich Research Council (2018-02871)

  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Anders Tengholm
  • Sebastian Barg

Diabetes Wellness Network Sweden

  • Anders Tengholm
  • Sebastian Barg

Swedish Diabetes Society

  • Anders Tengholm
  • Sebastian Barg

Swedish Society for Medical Research

  • Nikhil R Gandasi

Hjärnfonden

  • Sebastian Barg

NovoNordisk

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

Family Ernfors Foundation

  • Alenka Guček
  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with European and Swedish legislation, fundamental ethical principles and approved by the Regional Ethics Board Uppsala (license number 31, 1-32).

Copyright

© 2019, Guček et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,305
    views
  • 414
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alenka Guček
  2. Nikhil R Gandasi
  3. Muhmmad Omar-Hmeadi
  4. Marit Bakke
  5. Stein O Døskeland
  6. Anders Tengholm
  7. Sebastian Barg
(2019)
Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis
eLife 8:e41711.
https://doi.org/10.7554/eLife.41711

Share this article

https://doi.org/10.7554/eLife.41711

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.