Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis

Abstract

Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis.

Data availability

Source data file has been provided for Fig 7. All raw data are available on the Dryad Digital Repository (https://doi.org/10.5061/dryad.6b604g8).

The following data sets were generated

Article and author information

Author details

  1. Alenka Guček

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4453-1498
  2. Nikhil R Gandasi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Muhmmad Omar-Hmeadi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8893-7348
  4. Marit Bakke

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Stein O Døskeland

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Anders Tengholm

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4508-0836
  7. Sebastian Barg

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    sebastian.barg@mcb.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4661-5724

Funding

Swedish Research Council (2014-02575)

  • Anders Tengholm
  • Sebastian Barg

Norwegian Research Council

  • Marit Bakke

Helse-Bergen

  • Marit Bakke

Olga Jönssons stipend

  • Alenka Guček

P O Zetterlingsstiftelse

  • Alenka Guček

Swedish Research Council (2017-00956)

  • Anders Tengholm
  • Sebastian Barg

Swedich Research Council (2018-02871)

  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Anders Tengholm
  • Sebastian Barg

Diabetes Wellness Network Sweden

  • Anders Tengholm
  • Sebastian Barg

Swedish Diabetes Society

  • Anders Tengholm
  • Sebastian Barg

Swedish Society for Medical Research

  • Nikhil R Gandasi

Hjärnfonden

  • Sebastian Barg

NovoNordisk

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

Family Ernfors Foundation

  • Alenka Guček
  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with European and Swedish legislation, fundamental ethical principles and approved by the Regional Ethics Board Uppsala (license number 31, 1-32).

Version history

  1. Received: September 5, 2018
  2. Accepted: April 28, 2019
  3. Accepted Manuscript published: May 17, 2019 (version 1)
  4. Accepted Manuscript updated: May 20, 2019 (version 2)
  5. Version of Record published: June 10, 2019 (version 3)

Copyright

© 2019, Guček et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,129
    views
  • 385
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alenka Guček
  2. Nikhil R Gandasi
  3. Muhmmad Omar-Hmeadi
  4. Marit Bakke
  5. Stein O Døskeland
  6. Anders Tengholm
  7. Sebastian Barg
(2019)
Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis
eLife 8:e41711.
https://doi.org/10.7554/eLife.41711

Share this article

https://doi.org/10.7554/eLife.41711

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.