Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis

Abstract

Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis.

Data availability

Source data file has been provided for Fig 7. All raw data are available on the Dryad Digital Repository (https://doi.org/10.5061/dryad.6b604g8).

The following data sets were generated

Article and author information

Author details

  1. Alenka Guček

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4453-1498
  2. Nikhil R Gandasi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Muhmmad Omar-Hmeadi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8893-7348
  4. Marit Bakke

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Stein O Døskeland

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Anders Tengholm

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4508-0836
  7. Sebastian Barg

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    sebastian.barg@mcb.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4661-5724

Funding

Swedish Research Council (2014-02575)

  • Anders Tengholm
  • Sebastian Barg

Norwegian Research Council

  • Marit Bakke

Helse-Bergen

  • Marit Bakke

Olga Jönssons stipend

  • Alenka Guček

P O Zetterlingsstiftelse

  • Alenka Guček

Swedish Research Council (2017-00956)

  • Anders Tengholm
  • Sebastian Barg

Swedich Research Council (2018-02871)

  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Anders Tengholm
  • Sebastian Barg

Diabetes Wellness Network Sweden

  • Anders Tengholm
  • Sebastian Barg

Swedish Diabetes Society

  • Anders Tengholm
  • Sebastian Barg

Swedish Society for Medical Research

  • Nikhil R Gandasi

Hjärnfonden

  • Sebastian Barg

NovoNordisk

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

Family Ernfors Foundation

  • Alenka Guček
  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with European and Swedish legislation, fundamental ethical principles and approved by the Regional Ethics Board Uppsala (license number 31, 1-32).

Copyright

© 2019, Guček et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,285
    views
  • 406
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alenka Guček
  2. Nikhil R Gandasi
  3. Muhmmad Omar-Hmeadi
  4. Marit Bakke
  5. Stein O Døskeland
  6. Anders Tengholm
  7. Sebastian Barg
(2019)
Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis
eLife 8:e41711.
https://doi.org/10.7554/eLife.41711

Share this article

https://doi.org/10.7554/eLife.41711

Further reading

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.

    1. Cell Biology
    Erli Jin, Jennifer K Briggs ... Matthew J Merrins
    Research Article

    Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used three-dimensional (3D) light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes ‘hub cells’, is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-Cells that initiate the Ca2+ wave (leaders) are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning ‘leader’ β-cells.