Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis

Abstract

Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis.

Data availability

Source data file has been provided for Fig 7. All raw data are available on the Dryad Digital Repository (https://doi.org/10.5061/dryad.6b604g8).

The following data sets were generated

Article and author information

Author details

  1. Alenka Guček

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4453-1498
  2. Nikhil R Gandasi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Muhmmad Omar-Hmeadi

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8893-7348
  4. Marit Bakke

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Stein O Døskeland

    Department of Biomedicine, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Anders Tengholm

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4508-0836
  7. Sebastian Barg

    Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    sebastian.barg@mcb.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4661-5724

Funding

Swedish Research Council (2014-02575)

  • Anders Tengholm
  • Sebastian Barg

Norwegian Research Council

  • Marit Bakke

Helse-Bergen

  • Marit Bakke

Olga Jönssons stipend

  • Alenka Guček

P O Zetterlingsstiftelse

  • Alenka Guček

Swedish Research Council (2017-00956)

  • Anders Tengholm
  • Sebastian Barg

Swedich Research Council (2018-02871)

  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Anders Tengholm
  • Sebastian Barg

Diabetes Wellness Network Sweden

  • Anders Tengholm
  • Sebastian Barg

Swedish Diabetes Society

  • Anders Tengholm
  • Sebastian Barg

Swedish Society for Medical Research

  • Nikhil R Gandasi

Hjärnfonden

  • Sebastian Barg

NovoNordisk

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

Family Ernfors Foundation

  • Alenka Guček
  • Anders Tengholm
  • Sebastian Barg

European Foundation for the Study of Diabetes

  • Nikhil R Gandasi
  • Anders Tengholm
  • Sebastian Barg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with European and Swedish legislation, fundamental ethical principles and approved by the Regional Ethics Board Uppsala (license number 31, 1-32).

Version history

  1. Received: September 5, 2018
  2. Accepted: April 28, 2019
  3. Accepted Manuscript published: May 17, 2019 (version 1)
  4. Accepted Manuscript updated: May 20, 2019 (version 2)
  5. Version of Record published: June 10, 2019 (version 3)

Copyright

© 2019, Guček et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,154
    views
  • 390
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alenka Guček
  2. Nikhil R Gandasi
  3. Muhmmad Omar-Hmeadi
  4. Marit Bakke
  5. Stein O Døskeland
  6. Anders Tengholm
  7. Sebastian Barg
(2019)
Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis
eLife 8:e41711.
https://doi.org/10.7554/eLife.41711

Share this article

https://doi.org/10.7554/eLife.41711

Further reading

    1. Cancer Biology
    2. Cell Biology
    Mengya Zhao, Beiying Dai ... Yijun Chen
    Research Article

    Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.

    1. Cell Biology
    2. Genetics and Genomics
    Yangzi Zhao, Lijun Ren ... Zhukuan Cheng
    Research Article

    Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.