Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association

  1. Junyi Jiao
  2. Mengze He
  3. Sarah A Port
  4. Richard W Baker
  5. Yonggang Xu
  6. Hong Qu
  7. Yujian Xiong
  8. Yukun Wang
  9. Huaizhou Jin
  10. Travis J Eisemann
  11. Frederick M Hughson  Is a corresponding author
  12. Yongli Zhang  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Princeton University, United States

Abstract

Sec1/Munc18-family (SM) proteins are required for SNARE-mediated membrane fusion, but their mechanism(s) of action remain controversial. Using single-molecule force spectroscopy, we found that the SM protein Munc18-1 catalyzes step-wise zippering of three synaptic SNAREs (syntaxin, VAMP2, and SNAP-25) into a four-helix bundle. Catalysis requires formation of an intermediate template complex in which Munc18-1 juxtaposes the N-terminal regions of the SNARE motifs of syntaxin and VAMP2, while keeping their C-terminal regions separated. SNAP-25 binds the templated SNAREs to induce full SNARE zippering. Munc18-1 mutations modulate the stability of the template complex in a manner consistent with their effects on membrane fusion, indicating that chaperoned SNARE assembly is essential for exocytosis. Two other SM proteins, Munc18-3 and Vps33, similarly chaperone SNARE assembly via a template complex, suggesting that SM protein mechanism is conserved.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-10.

Article and author information

Author details

  1. Junyi Jiao

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mengze He

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah A Port

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1897-0510
  4. Richard W Baker

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yonggang Xu

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong Qu

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yujian Xiong

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yukun Wang

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Huaizhou Jin

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Travis J Eisemann

    Department of Molecular Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Frederick M Hughson

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    hughson@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
  12. Yongli Zhang

    Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    For correspondence
    yongli.zhang@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7079-7973

Funding

National Institute of General Medical Sciences (R01GM093341)

  • Yongli Zhang

National Institute of General Medical Sciences (R01GM120193)

  • Yongli Zhang

National Institute of General Medical Sciences (R01GM071574)

  • Frederick M Hughson

National Institute of General Medical Sciences (T32GM007223)

  • Junyi Jiao

Deutsche Forschungsgemeinschaft (PO2195/1-1)

  • Sarah A Port

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Josep Rizo, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: September 6, 2018
  2. Accepted: December 11, 2018
  3. Accepted Manuscript published: December 12, 2018 (version 1)
  4. Version of Record published: January 4, 2019 (version 2)

Copyright

© 2018, Jiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,131
    Page views
  • 558
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junyi Jiao
  2. Mengze He
  3. Sarah A Port
  4. Richard W Baker
  5. Yonggang Xu
  6. Hong Qu
  7. Yujian Xiong
  8. Yukun Wang
  9. Huaizhou Jin
  10. Travis J Eisemann
  11. Frederick M Hughson
  12. Yongli Zhang
(2018)
Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association
eLife 7:e41771.
https://doi.org/10.7554/eLife.41771

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Ritvija Agrawal et al.
    Research Article Updated

    Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.

    1. Cell Biology
    2. Developmental Biology
    Juan Lu et al.
    Research Article Updated

    Phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PIP2) are key phosphoinositides that determine the identity of the plasma membrane (PM) and regulate numerous key biological events there. To date, mechanisms regulating the homeostasis and dynamic turnover of PM PI4P and PIP2 in response to various physiological conditions and stresses remain to be fully elucidated. Here, we report that hypoxia in Drosophila induces acute and reversible depletion of PM PI4P and PIP2 that severely disrupts the electrostatic PM targeting of multiple polybasic polarity proteins. Genetically encoded ATP sensors confirmed that hypoxia induces acute and reversible reduction of cellular ATP levels which showed a strong real-time correlation with the levels of PM PI4P and PIP2 in cultured cells. By combining genetic manipulations with quantitative imaging assays we showed that PI4KIIIα, as well as Rbo/EFR3 and TTC7 that are essential for targeting PI4KIIIα to PM, are required for maintaining the homeostasis and dynamic turnover of PM PI4P and PIP2 under normoxia and hypoxia. Our results revealed that in cells challenged by energetic stresses triggered by hypoxia, ATP inhibition and possibly ischemia, dramatic turnover of PM PI4P and PIP2 could have profound impact on many cellular processes including electrostatic PM targeting of numerous polybasic proteins.