1. Microbiology and Infectious Disease
Download icon

Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling

Research Article
  • Cited 25
  • Views 8,244
  • Annotations
Cite this article as: eLife 2019;8:e42037 doi: 10.7554/eLife.42037

Abstract

Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention.

Article and author information

Author details

  1. Philip V'kovski

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8366-1220
  2. Markus Gerber

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jenna Kelly

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Pfaender

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadine Ebert

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sophie Braga Lagache

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Cedric Simillion

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Jasmine Portmann

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Hanspeter Stalder

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Véronique Gaschen

    Division Veterinary Anatomy, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Rémy Bruggmann

    Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4733-7922
  12. Michael H Stoffel

    Division of Veterinary Anatomy, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4699-5125
  13. Manfred Heller

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Ronald Dijkman Dijkman

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Volker Thiel

    Institute of Virology and Immunology IVI, Bern, Switzerland
    For correspondence
    volker.thiel@vetsuisse.unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5783-0887

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (173085)

  • Philip V'kovski
  • Volker Thiel

European Commission (748627)

  • Stephanie Pfaender
  • Volker Thiel

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (160780)

  • Jenna Kelly
  • Nadine Ebert
  • Volker Thiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Publication history

  1. Received: September 14, 2018
  2. Accepted: January 11, 2019
  3. Accepted Manuscript published: January 11, 2019 (version 1)
  4. Version of Record published: February 12, 2019 (version 2)

Copyright

© 2019, V'kovski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,244
    Page views
  • 1,263
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Samuel J Modlin et al.
    Research Article

    This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as ‘intercellular mosaic methylation’ (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Jessica Briggs et al.
    Research Article

    Multiple studies have reported a male bias in incidence and/or prevalence of malaria infection in males compared to females. To test the hypothesis that sex-based differences in host-parasite interactions affect the epidemiology of malaria, we intensively followed Plasmodium falciparum infections in a cohort in a malaria endemic area of eastern Uganda and estimated both force of infection (FOI) and rate of clearance using amplicon deep-sequencing. We found no evidence of differences in behavioral risk factors, incidence of malaria, or FOI by sex. In contrast, females cleared asymptomatic infections at a faster rate than males (hazard ratio [HR]=1.82, 95% CI 1.20 to 2.75 by clone and HR = 2.07, 95% CI 1.24 to 3.47 by infection event) in multivariate models adjusted for age, timing of infection onset, and parasite density. These findings implicate biological sex-based differences as an important factor in the host response to this globally important pathogen.