Abstract

Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD009975.All other data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Philip V'kovski

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8366-1220
  2. Markus Gerber

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jenna Kelly

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Pfaender

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadine Ebert

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sophie Braga Lagache

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Cedric Simillion

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Jasmine Portmann

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Hanspeter Stalder

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Véronique Gaschen

    Division Veterinary Anatomy, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Rémy Bruggmann

    Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4733-7922
  12. Michael H Stoffel

    Division of Veterinary Anatomy, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4699-5125
  13. Manfred Heller

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Ronald Dijkman Dijkman

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Volker Thiel

    Institute of Virology and Immunology IVI, Bern, Switzerland
    For correspondence
    volker.thiel@vetsuisse.unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5783-0887

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (173085)

  • Philip V'kovski
  • Volker Thiel

European Commission (748627)

  • Stephanie Pfaender
  • Volker Thiel

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (160780)

  • Jenna Kelly
  • Nadine Ebert
  • Volker Thiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, V'kovski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,182
    views
  • 1,687
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philip V'kovski
  2. Markus Gerber
  3. Jenna Kelly
  4. Stephanie Pfaender
  5. Nadine Ebert
  6. Sophie Braga Lagache
  7. Cedric Simillion
  8. Jasmine Portmann
  9. Hanspeter Stalder
  10. Véronique Gaschen
  11. Rémy Bruggmann
  12. Michael H Stoffel
  13. Manfred Heller
  14. Ronald Dijkman Dijkman
  15. Volker Thiel
(2019)
Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling
eLife 8:e42037.
https://doi.org/10.7554/eLife.42037

Share this article

https://doi.org/10.7554/eLife.42037

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.