Abstract
Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention.
Article and author information
Author details
Funding
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (173085)
- Philip V'kovski
- Volker Thiel
European Commission (748627)
- Stephanie Pfaender
- Volker Thiel
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (160780)
- Jenna Kelly
- Nadine Ebert
- Volker Thiel
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Karla Kirkegaard, Stanford University School of Medicine, United States
Publication history
- Received: September 14, 2018
- Accepted: January 11, 2019
- Accepted Manuscript published: January 11, 2019 (version 1)
- Version of Record published: February 12, 2019 (version 2)
Copyright
© 2019, V'kovski et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,927
- Page views
-
- 1,358
- Downloads
-
- 39
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.