1. Microbiology and Infectious Disease
Download icon

Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling

Research Article
  • Cited 39
  • Views 8,927
  • Annotations
Cite this article as: eLife 2019;8:e42037 doi: 10.7554/eLife.42037

Abstract

Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention.

Article and author information

Author details

  1. Philip V'kovski

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8366-1220
  2. Markus Gerber

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jenna Kelly

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Pfaender

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadine Ebert

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sophie Braga Lagache

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Cedric Simillion

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Jasmine Portmann

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Hanspeter Stalder

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Véronique Gaschen

    Division Veterinary Anatomy, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Rémy Bruggmann

    Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4733-7922
  12. Michael H Stoffel

    Division of Veterinary Anatomy, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4699-5125
  13. Manfred Heller

    Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Ronald Dijkman Dijkman

    Institute of Virology and Immunology IVI, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Volker Thiel

    Institute of Virology and Immunology IVI, Bern, Switzerland
    For correspondence
    volker.thiel@vetsuisse.unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5783-0887

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (173085)

  • Philip V'kovski
  • Volker Thiel

European Commission (748627)

  • Stephanie Pfaender
  • Volker Thiel

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (160780)

  • Jenna Kelly
  • Nadine Ebert
  • Volker Thiel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Publication history

  1. Received: September 14, 2018
  2. Accepted: January 11, 2019
  3. Accepted Manuscript published: January 11, 2019 (version 1)
  4. Version of Record published: February 12, 2019 (version 2)

Copyright

© 2019, V'kovski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,927
    Page views
  • 1,358
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Joshua M Jones et al.
    Research Article

    Horizontal gene transfer is a major force in bacterial evolution. Mobile genetic elements are responsible for much of horizontal gene transfer and also carry beneficial cargo genes. Uncovering strategies used by mobile genetic elements to benefit host cells is crucial for understanding their stability and spread in populations. We describe a benefit that ICEBs1, an integrative and conjugative element of Bacillus subtilis, provides to its host cells. Activation of ICEBs1 conferred a frequency-dependent selective advantage to host cells during two different developmental processes: biofilm formation and sporulation. These benefits were due to inhibition of biofilm-associated gene expression and delayed sporulation by ICEBs1-containing cells, enabling them to exploit their neighbors and grow more prior to development. A single ICEBs1 gene, devI (formerly ydcO), was both necessary and sufficient for inhibition of development. Manipulation of host developmental programs allows ICEBs1 to increase host fitness, thereby increasing propagation of the element.

    1. Ecology
    2. Microbiology and Infectious Disease
    Heidi A Arjes et al.
    Research Article Updated

    Life in a three-dimensional biofilm is typical for many bacteria, yet little is known about how strains interact in this context. Here, we created essential gene CRISPR interference knockdown libraries in biofilm-forming Bacillus subtilis and measured competitive fitness during colony co-culture with wild type. Partial knockdown of some translation-related genes reduced growth rates and led to out-competition. Media composition led some knockdowns to compete differentially as biofilm versus non-biofilm colonies. Cells depleted for the alanine racemase AlrA died in monoculture but survived in a biofilm colony co-culture via nutrient sharing. Rescue was enhanced in biofilm colony co-culture with a matrix-deficient parent due to a mutualism involving nutrient and matrix sharing. We identified several examples of mutualism involving matrix sharing that occurred in three-dimensional biofilm colonies but not when cultured in two dimensions. Thus, growth in a three-dimensional colony can promote genetic diversity through sharing of secreted factors and may drive evolution of mutualistic behavior.