Analysis of the genomic architecture of a complex trait locus in hypertensive rat models links Tmem63c to kidney damage
Abstract
Unraveling the genetic susceptibility of complex diseases such as chronic kidney disease remains challenging. Here, we used inbred rat models of kidney damage associated with elevated blood pressure for the comprehensive analysis of a major albuminuria susceptibility locus detected in these models. We characterized its genomic architecture by congenic substitution mapping, targeted next generation sequencing, and compartment-specific RNA sequencing analysis in isolated glomeruli. This led to prioritization of transmembrane protein Tmem63c as a novel potential target. Tmem63c is differentially expressed in glomeruli of allele-specific rat models during onset of albuminuria. Patients with focal segmental glomerulosclerosis exhibited specific TMEM63C loss in podocytes. Functional analysis in zebrafish revealed a role for tmem63c in mediating the glomerular filtration barrier function. Our data demonstrate that integrative analysis of the genomic architecture of a complex trait locus is a powerful tool for identification of new targets such as Tmem63c for further translational investigation.
Data availability
The genomic and transcriptomic data from this publication have been deposited to the NCBI curated repositories, GEO, and SRA, and assigned the identifier SubmissionID: SUB2950675 and BioProject ID: PRJNA398197 (DNA-Seq) and accession GSE102546 (RNA-Seq).
Article and author information
Author details
Funding
Deutsche Hochdruckliga
- Reinhold Kreutz
Deutsche Forschungsgemeinschaft (DFG KR 1152-3-1)
- Reinhold Kreutz
Helmholtz-Gemeinschaft (VH-NG-736)
- Daniela Panáková
European Commission (WNT/CALCIUM IN HEART-322189)
- Daniela Panáková
Deutsche Forschungsgemeinschaft (SCHU 2604/1-1)
- Angela Schulz
Deutsche Forschungsgemeinschaft (Project number 394046635 - SFB 1365)
- Reinhold Kreutz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental work in rat models was performed in accordance with the guidelines of the Charité-Universitätsmedizin Berlin and the local authority for animal protection (Landesamt für Gesundheit und Soziales, Berlin, Germany) for the use of laboratory animals. The registration numbers for the rat experiments are G 0255/09 and T 0189/02. Zebrafish were bred, raised and maintained in accordance with the guidelines of the Max Delbrück Center for Molecular Medicine and the local authority for animal protection (Landesamt für Gesundheit und Soziales, Berlin, Germany) for the use of laboratory animals, and followed the 'Principles of Laboratory Animal Care' (NIH publication no. 86-23, revised 1985) as well as the current version of German Law on the Protection of Animals.
Human subjects: All biopsy samples were handled and analyzed anonymously in accordance with the Dutch National Ethics Guidelines (Code for Proper Secondary Use of Human Tissue, Dutch Federation of Medical Scientific Societies). Because this study concerned retrospectively collected anonymized material, no informed consent was necessary following the Dutch National Ethics Guidelines. This study is in agreement with the Declaration of Helsinki and the Department of Health and Human Services Belmont Report and the use of the patient biopsies was approved by the medical ethical committee of the LUMC (registration number G16.110).
Reviewing Editor
- Tim Aitman, University of Edinburgh, United Kingdom
Publication history
- Received: September 16, 2018
- Accepted: March 20, 2019
- Accepted Manuscript published: March 22, 2019 (version 1)
- Version of Record published: April 23, 2019 (version 2)
Copyright
© 2019, Schulz et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,382
- Page views
-
- 228
- Downloads
-
- 13
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Neuroscience
Diet profoundly influences brain physiology, but how metabolic information is transmuted into neural activity and behavior changes remains elusive. Here, we show that the metabolic enzyme O-GlcNAc Transferase (OGT) moonlights on the chromatin of the D. melanogaster gustatory neurons to instruct changes in chromatin accessibility and transcription that underlie sensory adaptations to a high-sugar diet. OGT works synergistically with the Mitogen Activated Kinase/Extracellular signal Regulated Kinase (MAPK/ERK) rolled and its effector stripe (also known as EGR2 or Krox20) to integrate activity information. OGT also cooperates with the epigenetic silencer Polycomb Repressive Complex 2.1 (PRC2.1) to decrease chromatin accessibility and repress transcription in the high-sugar diet. This integration of nutritional and activity information changes the taste neurons’ responses to sugar and the flies’ ability to sense sweetness. Our findings reveal how nutrigenomic signaling generates neural activity and behavior in response to dietary changes in the sensory neurons.
-
- Genetics and Genomics
- Evolutionary Biology
Brain size and cortical folding have increased and decreased recurrently during mammalian evolution. Identifying genetic elements whose sequence or functional properties co-evolve with these traits can provide unique information on evolutionary and developmental mechanisms. A good candidate for such a comparative approach is TRNP1, as it controls proliferation of neural progenitors in mice and ferrets. Here, we investigate the contribution of both regulatory and coding sequences of TRNP1 to brain size and cortical folding in over 30 mammals. We find that the rate of TRNP1 protein evolution (ω) significantly correlates with brain size, slightly less with cortical folding and much less with body size. This brain correlation is stronger than for >95% of random control proteins. This co-evolution is likely affecting TRNP1 activity, as we find that TRNP1 from species with larger brains and more cortical folding induce higher proliferation rates in neural stem cells. Furthermore, we compare the activity of putative cis-regulatory elements (CREs) of TRNP1 in a massively parallel reporter assay and identify one CRE that likely co-evolves with cortical folding in Old World monkeys and apes. Our analyses indicate that coding and regulatory changes that increased TRNP1 activity were positively selected either as a cause or a consequence of increases in brain size and cortical folding. They also provide an example how phylogenetic approaches can inform biological mechanisms, especially when combined with molecular phenotypes across several species.