Analysis of the genomic architecture of a complex trait locus in hypertensive rat models links Tmem63c to kidney damage

  1. Angela Schulz
  2. Nicola Victoria Müller
  3. Nina Anne van de Lest
  4. Andreas Eisenreich
  5. Martina Schmidbauer
  6. Andrei Barysenka
  7. Bettina Purfürst
  8. Anje Sporbert
  9. Theodor Lorenzen
  10. Alexander M Meyer
  11. Laura Herlan
  12. Anika Witten
  13. Frank Rühle
  14. Weibin Zhou
  15. Emile de Heer
  16. Marion Scharpfenecker
  17. Daniela Panáková  Is a corresponding author
  18. Monika Stoll
  19. Reinhold Kreutz  Is a corresponding author
  1. Charité - Universitätsmedizin Berlin, Germany
  2. Leiden University Medical Center, Netherlands
  3. Westfälische Wilhelms University, Germany
  4. Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany
  5. Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Germany
  6. Duke University School of Medicine, United States

Abstract

Unraveling the genetic susceptibility of complex diseases such as chronic kidney disease remains challenging. Here, we used inbred rat models of kidney damage associated with elevated blood pressure for the comprehensive analysis of a major albuminuria susceptibility locus detected in these models. We characterized its genomic architecture by congenic substitution mapping, targeted next generation sequencing, and compartment-specific RNA sequencing analysis in isolated glomeruli. This led to prioritization of transmembrane protein Tmem63c as a novel potential target. Tmem63c is differentially expressed in glomeruli of allele-specific rat models during onset of albuminuria. Patients with focal segmental glomerulosclerosis exhibited specific TMEM63C loss in podocytes. Functional analysis in zebrafish revealed a role for tmem63c in mediating the glomerular filtration barrier function. Our data demonstrate that integrative analysis of the genomic architecture of a complex trait locus is a powerful tool for identification of new targets such as Tmem63c for further translational investigation.

Data availability

The genomic and transcriptomic data from this publication have been deposited to the NCBI curated repositories, GEO, and SRA, and assigned the identifier SubmissionID: SUB2950675 and BioProject ID: PRJNA398197 (DNA-Seq) and accession GSE102546 (RNA-Seq).

The following data sets were generated

Article and author information

Author details

  1. Angela Schulz

    Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4576-8035
  2. Nicola Victoria Müller

    Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7261-830X
  3. Nina Anne van de Lest

    Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Andreas Eisenreich

    Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Martina Schmidbauer

    Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrei Barysenka

    Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms University, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Bettina Purfürst

    Core Facility Electron Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Anje Sporbert

    Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Theodor Lorenzen

    Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Alexander M Meyer

    Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Laura Herlan

    Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Anika Witten

    Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms University, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Frank Rühle

    Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms University, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Weibin Zhou

    Center for Human Disease Modeling, Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Emile de Heer

    Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  16. Marion Scharpfenecker

    Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  17. Daniela Panáková

    Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    For correspondence
    daniela.panakova@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
  18. Monika Stoll

    Department of Genetic Epidemiology, Westfälische Wilhelms University, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  19. Reinhold Kreutz

    Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    reinhold.kreutz@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4818-211X

Funding

Deutsche Hochdruckliga

  • Reinhold Kreutz

Deutsche Forschungsgemeinschaft (DFG KR 1152-3-1)

  • Reinhold Kreutz

Helmholtz-Gemeinschaft (VH-NG-736)

  • Daniela Panáková

European Commission (WNT/CALCIUM IN HEART-322189)

  • Daniela Panáková

Deutsche Forschungsgemeinschaft (SCHU 2604/1-1)

  • Angela Schulz

Deutsche Forschungsgemeinschaft (Project number 394046635 - SFB 1365)

  • Reinhold Kreutz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tim Aitman, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: All experimental work in rat models was performed in accordance with the guidelines of the Charité-Universitätsmedizin Berlin and the local authority for animal protection (Landesamt für Gesundheit und Soziales, Berlin, Germany) for the use of laboratory animals. The registration numbers for the rat experiments are G 0255/09 and T 0189/02. Zebrafish were bred, raised and maintained in accordance with the guidelines of the Max Delbrück Center for Molecular Medicine and the local authority for animal protection (Landesamt für Gesundheit und Soziales, Berlin, Germany) for the use of laboratory animals, and followed the 'Principles of Laboratory Animal Care' (NIH publication no. 86-23, revised 1985) as well as the current version of German Law on the Protection of Animals.

Human subjects: All biopsy samples were handled and analyzed anonymously in accordance with the Dutch National Ethics Guidelines (Code for Proper Secondary Use of Human Tissue, Dutch Federation of Medical Scientific Societies). Because this study concerned retrospectively collected anonymized material, no informed consent was necessary following the Dutch National Ethics Guidelines. This study is in agreement with the Declaration of Helsinki and the Department of Health and Human Services Belmont Report and the use of the patient biopsies was approved by the medical ethical committee of the LUMC (registration number G16.110).

Version history

  1. Received: September 16, 2018
  2. Accepted: March 20, 2019
  3. Accepted Manuscript published: March 22, 2019 (version 1)
  4. Version of Record published: April 23, 2019 (version 2)

Copyright

© 2019, Schulz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,559
    views
  • 247
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angela Schulz
  2. Nicola Victoria Müller
  3. Nina Anne van de Lest
  4. Andreas Eisenreich
  5. Martina Schmidbauer
  6. Andrei Barysenka
  7. Bettina Purfürst
  8. Anje Sporbert
  9. Theodor Lorenzen
  10. Alexander M Meyer
  11. Laura Herlan
  12. Anika Witten
  13. Frank Rühle
  14. Weibin Zhou
  15. Emile de Heer
  16. Marion Scharpfenecker
  17. Daniela Panáková
  18. Monika Stoll
  19. Reinhold Kreutz
(2019)
Analysis of the genomic architecture of a complex trait locus in hypertensive rat models links Tmem63c to kidney damage
eLife 8:e42068.
https://doi.org/10.7554/eLife.42068

Share this article

https://doi.org/10.7554/eLife.42068

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.