1. Neuroscience
Download icon

Autoresuscitation: The central role of serotonin

  1. Gary C Mouradian
  2. Matthew R Hodges  Is a corresponding author
  1. Medical College of Wisconsin, United States
Insight
  • Cited 0
  • Views 1,325
  • Annotations
Cite this article as: eLife 2018;7:e42291 doi: 10.7554/eLife.42291

Abstract

The neurotransmitter serotonin helps to co-ordinate the respiratory and cardiovascular responses of newborns to oxygen deprivation.

Main text

Immediately after birth, human infants transition from an environment in which they do not have to breathe to one in which they do. Simultaneous with this transition are major changes in blood circulation that require the cardiovascular and respiratory systems – which are not fully mature at birth – to work together, under the control of the developing brain. However, the failure of these systems, and the failure of the autoresuscitation reflex in particular, is thought to be a major contributor to sudden infant death syndrome (SIDS).

Mortality rates for SIDS steadily declined as a result of a major education campaign in the early 1990s, the Back to Sleep campaign, which recommended to parents that they place infants on their backs rather than their stomachs to sleep. However, SIDS is still a leading cause of post-neonatal mortality, and the fact that nearly 90% of cases occur between two and four months of age suggests that SIDS might result from some form of neurobiological dysfunction during this period (Filiano and Kinney, 1994). Although physiological data from infants who later succumb to SIDS are rare, it is known that SIDS is often preceded by the cessation of breathing (apnea) and/or an associated slowing of the heart rate, impaired autoresuscitation, and a failure to arouse from sleep (Meny et al., 1994; Thach, 2015). Normally, these events lead to reduced levels of oxygen and increased levels of carbon dioxide in the blood, which elicits the autoresuscitation reflex in the form of gasping for air and the restoration of a normal heart rate and breathing pattern.

A breakthrough in the field resulted from a series of careful analyses of brainstem tissues from human SIDS cases, which revealed a number of alterations in the serotonin system in the brainstem (Paterson et al., 2006; Duncan et al., 2010). These results led to the development of animal models that allowed researchers to establish links between deficits in serotonin and poor autoresuscitation. Now, in eLife, Susan Dymecki, Eugene Nattie and colleagues at Harvard Medical School and the Geisel School of Medicine at Dartmouth – including Ryan Dosumu-Johnson as first author – report the results of experiments on a new mouse model that shed new light on the role of serotonin neurons in the autoresuscitory reflex (Dosumu-Johnson et al., 2018).

The researchers show that successful autoresuscitation after repeated bouts of anoxia (oxygen deprivation) requires the serotonin neurons to be working normally within a matter of a few days after birth. When a chemogenetic approach was used to silence the serotonin neurons, Dosumu-Johnson et al. found that aspects of gasping after repeated apnea were significantly altered, whereas the effect on the heart rate was less pronounced. The failure of autoresuscitation in this model lead to substantial mortality, consistent with prior reports (Cummings et al., 2009; Cummings et al., 2011; Barrett et al., 2016). The results are also strong evidence that the respiratory reflex (i.e., gasping) and the cardiovascular reflex (i.e., increased heart rate) become uncoupled when the serotonin neurons are silenced. It has long been thought that this sort of uncoupling contributes to SIDS, but this had not been demonstrated before.

Even more novel are the findings that the gasps elicited by anoxia are not normal. First, acute serotonin neuron silencing delayed the start of the gasping reflex, which suggests that the activity of these neurons is integral to the rapid initiation of this reflex. Second, the normal linear relationship between the recovery of a robust heart rate and the recovery of a normal breathing pattern was disrupted as early as the first gasps in the serotonin-neuron-silenced mice. Moreover, many features of the first attempts at gasping were predictive as to whether or not an individual pup would go on to survive the challenges. Measurements of the ratio of ventilation relative to metabolic rate were also predictive of future failure to recover from anoxia. The demonstration of altered gasp features also counters the view that while serotonin is important for the transition from normal breathing patterns to gasping, it is not required for normal gasp-related breathing patterns (Leiter, 2009).

This work of Dosumu-Johnson et al. represents a significant advance in defining a plausible connection between serotonin system dysfunction and the vital homeostatic reflexes that are thought to fail in human SIDS. This work goes even further in defining cardiorespiratory features that may, eventually, help with the development of prevention strategies and screening tools to determine relative risk for SIDS in human infants.

References

    1. Meny RG
    2. Carroll JL
    3. Carbone MT
    4. Kelly DH
    (1994)
    Cardiorespiratory recordings from infants dying suddenly and unexpectedly at home
    Pediatrics 93:44–49.

Article and author information

Author details

  1. Gary C Mouradian

    Gary C Mouradian is in the Department of Physiology, Medical College of Wisconsin, Milwaukee, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5038-2567
  2. Matthew R Hodges

    Matthew R Hodges is in the Department of Physiology and the Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, United States

    For correspondence
    mhodges@mcw.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1692-9055

Publication history

  1. Version of Record published: October 23, 2018 (version 1)

Copyright

© 2018, Mouradian et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,325
    Page views
  • 154
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Neuroscience
    Zifei Liang et al.
    Tools and Resources

    1H MRI maps brain structure and function non-invasively through versatile contrasts that exploit inhomogeneity in tissue micro-environments. Inferring histopathological information from MRI findings, however, remains challenging due to absence of direct links between MRI signals and cellular structures. Here, we show that deep convolutional neural networks, developed using co-registered multi-contrast MRI and histological data of the mouse brain, can estimate histological staining intensity directly from MRI signals at each voxel. The results provide three-dimensional maps of axons and myelin with tissue contrasts that closely mimics target histology and enhanced sensitivity and specificity compared to conventional MRI markers. Furthermore, the relative contribution of each MRI contrast within the networks can be used to optimize multi-contrast MRI acquisition. We anticipate our method to be a starting point for translation of MRI results into easy-to-understand virtual histology for neurobiologists and provide resources for validating novel MRI techniques.

    1. Neuroscience
    Jacob A Westerberg et al.
    Research Article

    Cognitive operations are widely studied by measuring electric fields through EEG and ECoG. However, despite their widespread use, the neural circuitry giving rise to these signals remains unknown because the functional architecture of cortical columns producing attention-associated electric fields has not been explored. Here we detail the laminar cortical circuitry underlying an attention-associated electric field measured over posterior regions of the brain in humans and monkeys. First, we identified visual cortical area V4 as one plausible contributor to this attention-associated electric field through inverse modeling of cranial EEG in macaque monkeys performing a visual attention task. Next, we performed laminar neurophysiological recordings on the prelunate gyrus and identified the electric-field-producing dipoles as synaptic activity in distinct cortical layers of area V4. Specifically, activation in the extragranular layers of cortex resulted in the generation of the attention-associated dipole. Feature selectivity of a given cortical column determined the overall contribution to this electric field. Columns selective for the attended feature contributed more to the electric field than columns selective for a different feature. Lastly, the laminar profile of synaptic activity generated by V4 was sufficient to produce an attention-associated signal measurable outside of the column. These findings suggest that the top-down recipient cortical layers produce an attention-associated electric field that can be measured extracortically with the relative contribution of each column depending upon the underlying functional architecture.