Autoresuscitation: The central role of serotonin
Immediately after birth, human infants transition from an environment in which they do not have to breathe to one in which they do. Simultaneous with this transition are major changes in blood circulation that require the cardiovascular and respiratory systems – which are not fully mature at birth – to work together, under the control of the developing brain. However, the failure of these systems, and the failure of the autoresuscitation reflex in particular, is thought to be a major contributor to sudden infant death syndrome (SIDS).
Mortality rates for SIDS steadily declined as a result of a major education campaign in the early 1990s, the Back to Sleep campaign, which recommended to parents that they place infants on their backs rather than their stomachs to sleep. However, SIDS is still a leading cause of post-neonatal mortality, and the fact that nearly 90% of cases occur between two and four months of age suggests that SIDS might result from some form of neurobiological dysfunction during this period (Filiano and Kinney, 1994). Although physiological data from infants who later succumb to SIDS are rare, it is known that SIDS is often preceded by the cessation of breathing (apnea) and/or an associated slowing of the heart rate, impaired autoresuscitation, and a failure to arouse from sleep (Meny et al., 1994; Thach, 2015). Normally, these events lead to reduced levels of oxygen and increased levels of carbon dioxide in the blood, which elicits the autoresuscitation reflex in the form of gasping for air and the restoration of a normal heart rate and breathing pattern.
A breakthrough in the field resulted from a series of careful analyses of brainstem tissues from human SIDS cases, which revealed a number of alterations in the serotonin system in the brainstem (Paterson et al., 2006; Duncan et al., 2010). These results led to the development of animal models that allowed researchers to establish links between deficits in serotonin and poor autoresuscitation. Now, in eLife, Susan Dymecki, Eugene Nattie and colleagues at Harvard Medical School and the Geisel School of Medicine at Dartmouth – including Ryan Dosumu-Johnson as first author – report the results of experiments on a new mouse model that shed new light on the role of serotonin neurons in the autoresuscitory reflex (Dosumu-Johnson et al., 2018).
The researchers show that successful autoresuscitation after repeated bouts of anoxia (oxygen deprivation) requires the serotonin neurons to be working normally within a matter of a few days after birth. When a chemogenetic approach was used to silence the serotonin neurons, Dosumu-Johnson et al. found that aspects of gasping after repeated apnea were significantly altered, whereas the effect on the heart rate was less pronounced. The failure of autoresuscitation in this model lead to substantial mortality, consistent with prior reports (Cummings et al., 2009; Cummings et al., 2011; Barrett et al., 2016). The results are also strong evidence that the respiratory reflex (i.e., gasping) and the cardiovascular reflex (i.e., increased heart rate) become uncoupled when the serotonin neurons are silenced. It has long been thought that this sort of uncoupling contributes to SIDS, but this had not been demonstrated before.
Even more novel are the findings that the gasps elicited by anoxia are not normal. First, acute serotonin neuron silencing delayed the start of the gasping reflex, which suggests that the activity of these neurons is integral to the rapid initiation of this reflex. Second, the normal linear relationship between the recovery of a robust heart rate and the recovery of a normal breathing pattern was disrupted as early as the first gasps in the serotonin-neuron-silenced mice. Moreover, many features of the first attempts at gasping were predictive as to whether or not an individual pup would go on to survive the challenges. Measurements of the ratio of ventilation relative to metabolic rate were also predictive of future failure to recover from anoxia. The demonstration of altered gasp features also counters the view that while serotonin is important for the transition from normal breathing patterns to gasping, it is not required for normal gasp-related breathing patterns (Leiter, 2009).
This work of Dosumu-Johnson et al. represents a significant advance in defining a plausible connection between serotonin system dysfunction and the vital homeostatic reflexes that are thought to fail in human SIDS. This work goes even further in defining cardiorespiratory features that may, eventually, help with the development of prevention strategies and screening tools to determine relative risk for SIDS in human infants.
References
-
Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brain stem 5-HT neuronsAmerican Journal of Physiology-Regulatory, Integrative and Comparative Physiology 296:R1783–R1796.https://doi.org/10.1152/ajpregu.00122.2009
-
Failed heart rate recovery at a critical age in 5-HT-deficient mice exposed to episodic anoxia: implications for SIDSJournal of Applied Physiology 111:825–833.https://doi.org/10.1152/japplphysiol.00336.2011
-
Serotonin, gasping, autoresuscitation, and SIDS--a contrarian viewJournal of Applied Physiology 106:1761–1762.https://doi.org/10.1152/japplphysiol.00329.2009
-
Cardiorespiratory recordings from infants dying suddenly and unexpectedly at homePediatrics 93:44–49.
Article and author information
Author details
Publication history
Copyright
© 2018, Mouradian et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,501
- views
-
- 168
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Wong et al., 2019 used a sensory preconditioning protocol to examine how sensory and fear memories are integrated in the rat medial temporal lobe. In this protocol, rats integrate a sound-light (sensory) memory that forms in stage 1 with a light-shock (fear) memory that forms in stage 2 to generate fear responses (freezing) across test presentations of the sound in stage 3. Here, we advance this research by showing that (1) how/when rats integrate the sound-light and light-shock memories (online in stage 2 or at test in stage 3) changes with the number of sound-light pairings in stage 1; and (2) regardless of how/when it occurs, the integration requires communication between two regions of the medial temporal lobe: the perirhinal cortex and basolateral amygdala complex. Thus, ‘event familiarity’ determines how/when sensory and fear memories are integrated but not the circuitry by which the integration occurs: this remains the same.
-
- Neuroscience
In albino mice and EphB1 knockout mice, mistargeted retinal ganglion cell axons form dense islands of axon terminals in the dorsal lateral geniculate nuclei (dLGN). The formation of these islands of retinal input depends on developmental patterns of spontaneous retinal activity. We reconstructed the microcircuitry of the activity-dependent islands and found that the boundaries of the island represent a remarkably strong segregation within retinogeniculate connectivity. We conclude that when sets of retinal input are established in the wrong part of the dLGN, the developing circuitry responds by forming a synaptically isolated subcircuit within the otherwise fully connected network. The fact that there is a developmental starting condition that can induce a synaptically segregated microcircuit has important implications for our understanding of the organization of visual circuits and our understanding of the implementation of activity-dependent development.