1. Cell Biology
  2. Developmental Biology
Download icon

Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the periosteal niche in the murine skeleton

  1. Valerie S Salazar
  2. Luciane P Capelo
  3. Claudio Cantù
  4. Dario Zimmerli
  5. Nehal Gosalia
  6. Steven Pregizer
  7. Karen Cox
  8. Satoshi Ohte
  9. Marina Feigenson
  10. Laura Gamer
  11. Jeffry S Nyman
  12. David J Carey
  13. Aris Economides
  14. Konrad Basler
  15. Vicki Rosen  Is a corresponding author
  1. Harvard School of Dental Medicine, United States
  2. Universidade Federal de São Paulo, Brazil
  3. University of Zürich, Switzerland
  4. Regeneron Pharmaceuticals, United States
  5. Vanderbilt University Medical Centre, United States
  6. Geisinger Health System, United States
Research Article
  • Cited 2
  • Views 906
  • Annotations
Cite this article as: eLife 2019;8:e42386 doi: 10.7554/eLife.42386

Abstract

Two decades after signals controlling bone length were discovered, the endogenous ligands determining bone width remain unknown. We show that postnatal establishment of normal bone width in mice, as mediated by bone-forming activity of the periosteum, requires BMP signaling at the innermost layer of the periosteal niche. This developmental signaling center becomes quiescent during adult life. Its reactivation however, is necessary for periosteal growth, enhanced bone strength, and accelerated fracture repair in response to bone-anabolic therapies used in clinical orthopedic settings. Although many BMPs are expressed in bone, periosteal BMP signaling and bone formation require only Bmp2 in the Prx1-Cre lineage. Mechanistically, BMP2 functions downstream of Lrp5/6 pathway to activate a conserved regulatory element upstream of Sp7 via recruitment of Smad1 and Grhl3. Consistent with our findings, human variants of BMP2 and GRHL3 are associated with increased risk of fractures.

Article and author information

Author details

  1. Valerie S Salazar

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2111-9313
  2. Luciane P Capelo

    Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Claudio Cantù

    Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Dario Zimmerli

    Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Nehal Gosalia

    Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven Pregizer

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karen Cox

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Satoshi Ohte

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marina Feigenson

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Laura Gamer

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jeffry S Nyman

    Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Centre, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David J Carey

    Geisinger Health System, Danville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Aris Economides

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6508-8942
  14. Konrad Basler

    Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Vicki Rosen

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    For correspondence
    vicki_rosen@hsdm.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4029-1055

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR055904)

  • Vicki Rosen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In vivo experiments were performed in compliance with the Guide for the Care and Use of Laboratory Animals and were approved by the Harvard Medical Area Institutional Animal Care and Use Committee (protocol #04043 to Vicki Rosen).

Reviewing Editor

  1. Clifford J Rosen, Maine Medical Center Research Institute, United States

Publication history

  1. Received: September 27, 2018
  2. Accepted: February 6, 2019
  3. Accepted Manuscript published: February 8, 2019 (version 1)
  4. Version of Record published: February 22, 2019 (version 2)

Copyright

© 2019, Salazar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 906
    Page views
  • 193
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Johanna Funk et al.
    Research Article Updated
    1. Cell Biology
    2. Developmental Biology
    Nicanor González-Morales et al.
    Research Article