Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the periosteal niche in the murine skeleton

  1. Valerie S Salazar
  2. Luciane P Capelo
  3. Claudio Cantù
  4. Dario Zimmerli
  5. Nehal Gosalia
  6. Steven Pregizer
  7. Karen Cox
  8. Satoshi Ohte
  9. Marina Feigenson
  10. Laura Gamer
  11. Jeffry S Nyman
  12. David J Carey
  13. Aris Economides
  14. Konrad Basler
  15. Vicki Rosen  Is a corresponding author
  1. Harvard School of Dental Medicine, United States
  2. Universidade Federal de São Paulo, Brazil
  3. University of Zürich, Switzerland
  4. Regeneron Pharmaceuticals, United States
  5. Vanderbilt University Medical Centre, United States
  6. Geisinger Health System, United States

Abstract

Two decades after signals controlling bone length were discovered, the endogenous ligands determining bone width remain unknown. We show that postnatal establishment of normal bone width in mice, as mediated by bone-forming activity of the periosteum, requires BMP signaling at the innermost layer of the periosteal niche. This developmental signaling center becomes quiescent during adult life. Its reactivation however, is necessary for periosteal growth, enhanced bone strength, and accelerated fracture repair in response to bone-anabolic therapies used in clinical orthopedic settings. Although many BMPs are expressed in bone, periosteal BMP signaling and bone formation require only Bmp2 in the Prx1-Cre lineage. Mechanistically, BMP2 functions downstream of Lrp5/6 pathway to activate a conserved regulatory element upstream of Sp7 via recruitment of Smad1 and Grhl3. Consistent with our findings, human variants of BMP2 and GRHL3 are associated with increased risk of fractures.

Data availability

The DiscoverEHR human dataset is published and publicly available at http://www.discovehrshare.com. Using search terms 'BMP2' and 'GRHL3' and a Bonferroni significance threshold of P < 1.86e-7 for 268,192 association results, we observed three significant associations for BMP2 and six significant associations for GRHL3.Mouse limb bud ChIP-sequencing data are available through ArrayExpress website https://www.ebi.ac.uk/arrayexpress and accession #E-MTAB-7652.

The following data sets were generated

Article and author information

Author details

  1. Valerie S Salazar

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2111-9313
  2. Luciane P Capelo

    Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Claudio Cantù

    Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Dario Zimmerli

    Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Nehal Gosalia

    Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven Pregizer

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karen Cox

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Satoshi Ohte

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marina Feigenson

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Laura Gamer

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jeffry S Nyman

    Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Centre, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David J Carey

    Geisinger Health System, Danville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Aris Economides

    Skeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6508-8942
  14. Konrad Basler

    Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Vicki Rosen

    Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
    For correspondence
    vicki_rosen@hsdm.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4029-1055

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR055904)

  • Vicki Rosen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Clifford J Rosen, Maine Medical Center Research Institute, United States

Ethics

Animal experimentation: In vivo experiments were performed in compliance with the Guide for the Care and Use of Laboratory Animals and were approved by the Harvard Medical Area Institutional Animal Care and Use Committee (protocol #04043 to Vicki Rosen).

Version history

  1. Received: September 27, 2018
  2. Accepted: February 6, 2019
  3. Accepted Manuscript published: February 8, 2019 (version 1)
  4. Version of Record published: February 22, 2019 (version 2)

Copyright

© 2019, Salazar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,171
    views
  • 373
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valerie S Salazar
  2. Luciane P Capelo
  3. Claudio Cantù
  4. Dario Zimmerli
  5. Nehal Gosalia
  6. Steven Pregizer
  7. Karen Cox
  8. Satoshi Ohte
  9. Marina Feigenson
  10. Laura Gamer
  11. Jeffry S Nyman
  12. David J Carey
  13. Aris Economides
  14. Konrad Basler
  15. Vicki Rosen
(2019)
Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the periosteal niche in the murine skeleton
eLife 8:e42386.
https://doi.org/10.7554/eLife.42386

Share this article

https://doi.org/10.7554/eLife.42386

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.