A mechanistic model for long-term immunological outcomes in South African HIV-infected children and adults receiving ART

  1. Eva Liliane Ujeneza  Is a corresponding author
  2. Wilfred Ndifon
  3. Shobna Shawry
  4. Geoffrey Fatti
  5. Julien Riou
  6. Mary-Ann Davies
  7. Martin Nieuwoudt
  8. IeDEA-Southern Africa collaboration
  1. Stellenbosch University, South Africa
  2. African Institute for Mathematical Sciences Next Einstein Initiative, Rwanda
  3. University of the Witwatersrand, South Africa
  4. Kheth'Impilo AIDS Free Living, Division of Epidemiology and Biostatistics, South Africa
  5. University of Bern, Switzerland
  6. University of Cape Town, South Africa

Abstract

Long-term effects of the growing population of HIV-treated people in Southern Africa on individuals and the public health sector at large are not yet understood. This study proposes a novel 'ratio' model that relates CD4+ T-cell counts of HIV-infected individuals to the CD4+ count reference values from healthy populations. We use mixed-effects regression to fit the model to data from 1,616 children (median age 4.3 years at ART initiation) and 14,542 adults (median age 36 years at ART initiation). We found that the scaled carrying capacity, maximum CD4+ count relative to an HIV-negative individual of similar age, and baseline scaled CD4+ counts were closer to healthy values in children than in adults. Post-ART initiation, CD4+ growth rate was inversely correlated with baseline CD4+ T-cell counts, and consequently higher in adults than children. Our results highlight the impacts of age on dynamics of the immune system of healthy and HIV-infected individuals.

Data availability

Data used is from the International epidemiologic Databases to Evaluate AIDS Southern Africa collaboration. They maintain a database of routinely collected data from various clinics , mostly located in South Africa. We recommend that interested readers contact Dr. Morna Cornell, Project Manager IeDEA-SA in Cape Town (morna.cornell@uct.ac.za) to establish a data-sharing agreement. A research proposal highlighting how the data will be used is required.Source data for Figures / Figure supplements are provided and the Source code is available via GitHub.

Article and author information

Author details

  1. Eva Liliane Ujeneza

    DST/NRF South African Center for Epidemiological Modelling and Analysis (SACEMA), Mathematics, Stellenbosch University, Stellenbosch, South Africa
    For correspondence
    ujeneva@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5760-4847
  2. Wilfred Ndifon

    Research, African Institute for Mathematical Sciences Next Einstein Initiative, Kigali, Rwanda
    Competing interests
    The authors declare that no competing interests exist.
  3. Shobna Shawry

    Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  4. Geoffrey Fatti

    Research, Kheth'Impilo AIDS Free Living, Division of Epidemiology and Biostatistics, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6467-662X
  5. Julien Riou

    Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary-Ann Davies

    Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine and Family Medecine, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Nieuwoudt

    DST/NRF South African Center for Epidemiological Modelling and Analysis, Institute for Biomedical Engineering (IBE), Stellenbosch University, Stellenbosch, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  8. IeDEA-Southern Africa collaboration

Funding

Schlumberger Foundation

  • Eva Liliane Ujeneza

South African Department of Science and Technology and the National Research Foundation's Center of Excellence for Modelling and Analysis of Epidemiological Data

  • Eva Liliane Ujeneza

National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number (U01AI069924)

  • Mary-Ann Davies

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Miles P Davenport, University of New South Wales, Australia

Ethics

Human subjects: This study was approved as part of the IeDEA Southern African collaboration's protocol, by the Human Research Ethics Committee of the University of Cape Town, with a reference number N1810119 RECIP UCT 084/2006. Informed consent was obtained from all participants by the clinics collecting the data according to IeDEA protocols.

Version history

  1. Received: September 27, 2018
  2. Accepted: January 13, 2021
  3. Accepted Manuscript published: January 14, 2021 (version 1)
  4. Version of Record published: February 3, 2021 (version 2)

Copyright

© 2021, Ujeneza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 710
    views
  • 119
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva Liliane Ujeneza
  2. Wilfred Ndifon
  3. Shobna Shawry
  4. Geoffrey Fatti
  5. Julien Riou
  6. Mary-Ann Davies
  7. Martin Nieuwoudt
  8. IeDEA-Southern Africa collaboration
(2021)
A mechanistic model for long-term immunological outcomes in South African HIV-infected children and adults receiving ART
eLife 10:e42390.
https://doi.org/10.7554/eLife.42390

Share this article

https://doi.org/10.7554/eLife.42390

Further reading

    1. Microbiology and Infectious Disease
    Alejandro Prieto, Luïsa Miró ... Antonio Juarez
    Research Article

    Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.