Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma

  1. Blake Ferguson
  2. Herlina Y Handoko
  3. Pamela Mukhopadhyay
  4. Arash Chitsazan
  5. Lois Balmer
  6. Grant Morahan
  7. Graeme J Walker  Is a corresponding author
  1. QIMR Berghofer Medical Research Institute, Australia
  2. Harry Perkins Institute of Medical Research, Australia

Abstract

Genetic variation conferring resistance and susceptibility to carcinogen-induced tumorigenesis is frequently studied in mice. We have now turned this to melanoma using the collaborative cross (CC), a resource of mouse strains designed to discover genes for complex diseases. We studied melanoma-prone transgenic progeny across seventy CC genetic backgrounds. We mapped a strong quantitative trait locus for rapid onset spontaneous melanoma onset to Prkdc, a gene involved in detection and repair of DNA damage. In contrast, rapid onset UVR-induced melanoma was linked to the ribosomal subunit gene Rrp15. Ribosome biogenesis was upregulated in skin shortly after UVR exposure. Mechanistically, variation in the 'usual suspects' by which UVR may exacerbate melanoma, defective DNA repair, melanocyte proliferation, or inflammatory cell infiltration, did not explain melanoma susceptibility or resistance across the CC. Instead, events occurring soon after exposure, such as dysregulation of ribosome function, which alters many aspects of cellular metabolism, may be important.

Data availability

All data generated in this manuscript are provided in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Blake Ferguson

    QIMR Berghofer Medical Research Institute, Herston, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Herlina Y Handoko

    QIMR Berghofer Medical Research Institute, Herston, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Pamela Mukhopadhyay

    QIMR Berghofer Medical Research Institute, Herston, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Arash Chitsazan

    QIMR Berghofer Medical Research Institute, Herston, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Lois Balmer

    Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Grant Morahan

    Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Graeme J Walker

    QIMR Berghofer Medical Research Institute, Herston, Australia
    For correspondence
    Graeme.Walker@qimr.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9392-8769

Funding

Melanoma Research Alliance (Investigator Grant Award Number: 346859 2015-2018)

  • Graeme J Walker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations Australian code of Practice for the care and use of animals for scientific purposes.. All of the animals were handled according to approved institutional animal care and use committee of the Queensland Institute of Medical research. The protocol was approved by the Committee (A98004M). No surgery was performed. Animals were sacrificed when tumours reached 10mm in diameter, or animals were otherwise distressed.

Copyright

© 2019, Ferguson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,609
    views
  • 278
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.42424

Further reading

    1. Cancer Biology
    Pierluigi Scerbo, Benjamin Tisserand ... Bertrand Ducos
    Research Article

    Why does a normal cell possibly harboring genetic mutations in oncogene or tumor suppressor genes becomes malignant and develops a tumor is a subject of intense debate. Various theories have been proposed but their experimental test has been hampered by the unpredictable and improbable malignant transformation of single cells. Here, using an optogenetic approach we permanently turn on an oncogene (KRASG12V) in a single cell of a zebrafish brain that, only in synergy with the transient co-activation of a reprogramming factor (VENTX/NANOG/OCT4), undergoes a deterministic malignant transition and robustly and reproducibly develops within 6 days into a full-blown tumor. The controlled way in which a single cell can thus be manipulated to give rise to cancer lends support to the ‘ground state theory of cancer initiation’ through ‘short-range dispersal’ of the first malignant cells preceding tumor growth.

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.