1. Chromosomes and Gene Expression
  2. Genetics and Genomics
Download icon

Cisplatin-induced DNA double-strand breaks promote meiotic chromosome synapsis in PRDM9-controlled mouse hybrid sterility

  1. Liu Wang
  2. Barbora Valiskova
  3. Jiri Forejt  Is a corresponding author
  1. Academy of Sciences of the Czech Republic, Czech Republic
Research Advance
  • Cited 5
  • Views 1,143
  • Annotations
Cite this article as: eLife 2018;7:e42511 doi: 10.7554/eLife.42511


PR domain containing 9 (Prdm9) is a gene specifying hotspots of meiotic recombination but in hybrids between two mouse subspecies Prdm9 controls failure of meiotic chromosome synapsis and hybrid male sterility. We have previously reported that Prdm9-controlled asynapsis and meiotic arrest are conditioned by the inter-subspecific heterozygosity of the hybrid genome and we presumed that the insufficient number of properly repaired PRDM9-dependent DNA double-strand breaks (DSBs) causes asynapsis of chromosomes and meiotic arrest (Gregorova et al. 2018). We now extend the evidence for the lack of properly processed DSBs by improving meiotic chromosome synapsis with exogenous DSBs. A single injection of chemotherapeutic drug cisplatin increased frequency of RPA and DMC1 foci at the zygotene stage of sterile hybrids, enhanced homolog recognition and increased the proportion of spermatocytes with fully synapsed homologs at pachytene. The results bring a new evidence for a DSB-dependent mechanism of synapsis failure and infertility of intersubspecific hybrids.

Data availability

All data generated or analyzed during this study are included in the manuscript and source files

Article and author information

Author details

  1. Liu Wang

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Barbora Valiskova

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiri Forejt

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2793-3623


Grantova Agentura Ceske Republiky (16-01969S)

  • Jiri Forejt

Ministry of Education Youth and Sports of the Czech Republic (LQ1604 project of NSPII)

  • Jiri Forejt

Charles University Grant Agency of the Czech Republic (17115)

  • Barbora Valiskova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: The project was approved by the Animal Care and Use Committee of the Institute of Molecular Genetics AS CR, protocol No 141/2012. The principles of laboratory animal care, Czech Act No. 246/1992 Sb., compatible with EU Council Directive 86/609/EEC and Appendix of the Council of Europe Convention ETS, were observed.

Reviewing Editor

  1. Patricia J Wittkopp, University of Michigan, United States

Publication history

  1. Received: October 3, 2018
  2. Accepted: December 27, 2018
  3. Accepted Manuscript published: December 28, 2018 (version 1)
  4. Version of Record published: January 8, 2019 (version 2)


© 2018, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,143
    Page views
  • 203
  • 5

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Lizhi He et al.
    Research Article Updated

    The YAP and TAZ paralogs are transcriptional co-activators recruited to target sites by TEAD proteins. Here, we show that YAP and TAZ are also recruited by JUNB (a member of the AP-1 family) and STAT3, key transcription factors that mediate an epigenetic switch linking inflammation to cellular transformation. YAP and TAZ directly interact with JUNB and STAT3 via a WW domain important for transformation, and they stimulate transcriptional activation by AP-1 proteins. JUNB, STAT3, and TEAD co-localize at virtually all YAP/TAZ target sites, yet many target sites only contain individual AP-1, TEAD, or STAT3 motifs. This observation and differences in relative crosslinking efficiencies of JUNB, TEAD, and STAT3 at YAP/TAZ target sites suggest that YAP/TAZ is recruited by different forms of an AP-1/STAT3/TEAD complex depending on the recruiting motif. The different classes of YAP/TAZ target sites are associated with largely non-overlapping genes with distinct functions. A small minority of target sites are YAP- or TAZ-specific, and they are associated with different sequence motifs and gene classes from shared YAP/TAZ target sites. Genes containing either the AP-1 or TEAD class of YAP/TAZ sites are associated with poor survival of breast cancer patients with the triple-negative form of the disease.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Natalia Petrenko, Kevin Struhl
    Research Article Updated

    The preinitiation complex (PIC) for transcriptional initiation by RNA polymerase (Pol) II is composed of general transcription factors that are highly conserved. However, analysis of ChIP-seq datasets reveals kinetic and compositional differences in the transcriptional initiation process among eukaryotic species. In yeast, Mediator associates strongly with activator proteins bound to enhancers, but it transiently associates with promoters in a form that lacks the kinase module. In contrast, in human, mouse, and fly cells, Mediator with its kinase module stably associates with promoters, but not with activator-binding sites. This suggests that yeast and metazoans differ in the nature of the dynamic bridge of Mediator between activators and Pol II and the composition of a stable inactive PIC-like entity. As in yeast, occupancies of TATA-binding protein (TBP) and TBP-associated factors (Tafs) at mammalian promoters are not strictly correlated. This suggests that within PICs, TFIID is not a monolithic entity, and multiple forms of TBP affect initiation at different classes of genes. TFIID in flies, but not yeast and mammals, interacts strongly at regions downstream of the initiation site, consistent with the importance of downstream promoter elements in that species. Lastly, Taf7 and the mammalian-specific Med26 subunit of Mediator also interact near the Pol II pause region downstream of the PIC, but only in subsets of genes and often not together. Species-specific differences in PIC structure and function are likely to affect how activators and repressors affect transcriptional activity.