Abstract

Current technologies to generate CRISPR/Cas gene perturbation reagents are labor intense and require multiple ligation and cloning steps. Furthermore, increasing gRNA sequence diversity negatively affects gRNA distribution, leading to libraries of heterogeneous quality. Here, we present a rapid and cloning-free mutagenesis technology to efficiently generate covalently-closed-circular-synthesized (3Cs) CRISPR/Cas gRNA reagents that uncouples sequence diversity from sequence distribution. We demonstrate fidelity and performance of 3Cs reagents by tailored targeting of all human deubiquitinating enzymes (DUBs) and identify their essentiality for cell fitness. To explore high-content screening, we aimed at generating the up-to-date largest gRNA library to simultaneously interrogate the coding and noncoding human genome and identify genes, predicted promoter flanking regions, transcription factor and CTCF binding sites linked to doxorubicin resistance. Our 3Cs technology enables fast and robust generation of bias-free gene perturbation libraries with yet unmatched diversities and should be considered an alternative to established technologies.

Data availability

All data generated or analysed during this study are included in the manuscript, supplementary files or are available through GitHub or Dryad. NGS data and custom software is available as supplementary files and from Dryad and GitHub. Plasmids encoding oTGW 3Cs-gRNA libraries will be made available through the Goethe University Depository (http://innovectis.de/technologien/goethe-depository/).

The following data sets were generated

Article and author information

Author details

  1. Martin Wegner

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Martin Wegner, The Goethe University Frankfurt has filed a patent related to this work on which M.W. is an inventor (WO2017EP84625).
  2. Valentina Diehl

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Valentina Diehl, The Goethe University Frankfurt has filed a patent related to this work on which V.D. is an inventor (WO2017EP84625).
  3. Verena Bittl

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  4. Rahel de Bruyn

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Rahel de Bruyn, The Goethe University Frankfurt has filed a patent related to this work on which R.D.B. is an inventor (WO2017EP84625).
  5. Svenja Wiechmann

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Svenja Wiechmann, The Goethe University Frankfurt has filed a patent related to this work on which S.W. is an inventor (WO2017EP84625).
  6. Yves Matthess

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4040-1258
  7. Marie Hebel

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  8. Michael GB Hayes

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  9. Simone Schaubeck

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  10. Christopher Benner

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  11. Sven Heinz

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  12. Anja Bremm

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1386-0926
  13. Ivan Dikic

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Ivan Dikic, is co-founder, shareholder and CEO of Vivlion GmbH in Gründung. Also a senior editor of eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8156-9511
  14. Andreas Ernst

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Andreas Ernst, The Goethe University Frankfurt has filed a patent related to this work on which A.E. is an inventor (WO2017EP84625).
  15. Manuel Kaulich

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    For correspondence
    kaulich@em.uni-frankfurt.de
    Competing interests
    Manuel Kaulich, The Goethe University Frankfurt has filed a patent related to this work on which M.K. is an inventor (WO2017EP84625). Also co-founder, shareholder and CSO of Vivlion GmbH in Gründung.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9528-8822

Funding

Hessisches Ministerium für Wissenschaft und Kunst (IIIL5-518/17.004)

  • Manuel Kaulich

Deutsche Forschungsgemeinschaft (EXC115/2)

  • Manuel Kaulich

Hessisches Ministerium für Wissenschaft und Kunst (IIIL5-519/03/03.001)

  • Manuel Kaulich

Deutsche Forschungsgemeinschaft (EXC147/2)

  • Manuel Kaulich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Wegner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,033
    views
  • 1,150
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Wegner
  2. Valentina Diehl
  3. Verena Bittl
  4. Rahel de Bruyn
  5. Svenja Wiechmann
  6. Yves Matthess
  7. Marie Hebel
  8. Michael GB Hayes
  9. Simone Schaubeck
  10. Christopher Benner
  11. Sven Heinz
  12. Anja Bremm
  13. Ivan Dikic
  14. Andreas Ernst
  15. Manuel Kaulich
(2019)
Circular synthesized CRISPR/Cas gRNAs for functional interrogations in the coding and noncoding genome
eLife 8:e42549.
https://doi.org/10.7554/eLife.42549

Share this article

https://doi.org/10.7554/eLife.42549

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.