Abstract

Current technologies to generate CRISPR/Cas gene perturbation reagents are labor intense and require multiple ligation and cloning steps. Furthermore, increasing gRNA sequence diversity negatively affects gRNA distribution, leading to libraries of heterogeneous quality. Here, we present a rapid and cloning-free mutagenesis technology to efficiently generate covalently-closed-circular-synthesized (3Cs) CRISPR/Cas gRNA reagents that uncouples sequence diversity from sequence distribution. We demonstrate fidelity and performance of 3Cs reagents by tailored targeting of all human deubiquitinating enzymes (DUBs) and identify their essentiality for cell fitness. To explore high-content screening, we aimed at generating the up-to-date largest gRNA library to simultaneously interrogate the coding and noncoding human genome and identify genes, predicted promoter flanking regions, transcription factor and CTCF binding sites linked to doxorubicin resistance. Our 3Cs technology enables fast and robust generation of bias-free gene perturbation libraries with yet unmatched diversities and should be considered an alternative to established technologies.

Data availability

All data generated or analysed during this study are included in the manuscript, supplementary files or are available through GitHub or Dryad. NGS data and custom software is available as supplementary files and from Dryad and GitHub. Plasmids encoding oTGW 3Cs-gRNA libraries will be made available through the Goethe University Depository (http://innovectis.de/technologien/goethe-depository/).

The following data sets were generated

Article and author information

Author details

  1. Martin Wegner

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Martin Wegner, The Goethe University Frankfurt has filed a patent related to this work on which M.W. is an inventor (WO2017EP84625).
  2. Valentina Diehl

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Valentina Diehl, The Goethe University Frankfurt has filed a patent related to this work on which V.D. is an inventor (WO2017EP84625).
  3. Verena Bittl

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  4. Rahel de Bruyn

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Rahel de Bruyn, The Goethe University Frankfurt has filed a patent related to this work on which R.D.B. is an inventor (WO2017EP84625).
  5. Svenja Wiechmann

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Svenja Wiechmann, The Goethe University Frankfurt has filed a patent related to this work on which S.W. is an inventor (WO2017EP84625).
  6. Yves Matthess

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4040-1258
  7. Marie Hebel

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  8. Michael GB Hayes

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  9. Simone Schaubeck

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  10. Christopher Benner

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  11. Sven Heinz

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  12. Anja Bremm

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1386-0926
  13. Ivan Dikic

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Ivan Dikic, is co-founder, shareholder and CEO of Vivlion GmbH in Gründung. Also a senior editor of eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8156-9511
  14. Andreas Ernst

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    Andreas Ernst, The Goethe University Frankfurt has filed a patent related to this work on which A.E. is an inventor (WO2017EP84625).
  15. Manuel Kaulich

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    For correspondence
    kaulich@em.uni-frankfurt.de
    Competing interests
    Manuel Kaulich, The Goethe University Frankfurt has filed a patent related to this work on which M.K. is an inventor (WO2017EP84625). Also co-founder, shareholder and CSO of Vivlion GmbH in Gründung.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9528-8822

Funding

Hessisches Ministerium für Wissenschaft und Kunst (IIIL5-518/17.004)

  • Manuel Kaulich

Deutsche Forschungsgemeinschaft (EXC115/2)

  • Manuel Kaulich

Hessisches Ministerium für Wissenschaft und Kunst (IIIL5-519/03/03.001)

  • Manuel Kaulich

Deutsche Forschungsgemeinschaft (EXC147/2)

  • Manuel Kaulich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Wegner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,074
    views
  • 1,156
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Wegner
  2. Valentina Diehl
  3. Verena Bittl
  4. Rahel de Bruyn
  5. Svenja Wiechmann
  6. Yves Matthess
  7. Marie Hebel
  8. Michael GB Hayes
  9. Simone Schaubeck
  10. Christopher Benner
  11. Sven Heinz
  12. Anja Bremm
  13. Ivan Dikic
  14. Andreas Ernst
  15. Manuel Kaulich
(2019)
Circular synthesized CRISPR/Cas gRNAs for functional interrogations in the coding and noncoding genome
eLife 8:e42549.
https://doi.org/10.7554/eLife.42549

Share this article

https://doi.org/10.7554/eLife.42549

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.