Leave-One-Trial-Out, LOTO, a general approach to link single-trial parameters of cognitive models to neural data

  1. Sebastian Gluth  Is a corresponding author
  2. Nachshon Meiran
  1. University of Basel, Switzerland
  2. Ben-Gurion University of the Negev, Israel

Abstract

It has become a key goal of model-based cognitive neuroscience to estimate trial-by-trial fluctuations of cognitive model parameters for linking these fluctuations to brain signals. However, previously developed methods were limited by being difficulty to implement, time-consuming, or model-specific. Here, we propose an easy, efficient and general approach to estimating trial-wise changes in parameters: Leave-One-Trial-Out (LOTO). The rationale behind LOTO is that the difference between parameter estimates for the complete dataset and for the dataset with one omitted trial reflects the parameter value in the omitted trial. We show that LOTO is superior to estimating parameter values from single trials and compare it to previously proposed approaches. Furthermore, the method allows distinguishing true variability in a parameter from noise and from other sources of variability. In our view, the practicability and generality of LOTO will advance research on tracking fluctuations in latent cognitive variables and linking them to neural data.

Data availability

The relevant data and computer codes are uploaded on the Open Science Framework (https://osf.io/du85f/) and are freely available.

The following data sets were generated
    1. Gluth S
    2. Meiran N
    (2018) Leave-one-trial-out (LOTO)
    Open Science Framework, 10.17605/OSF.IO/DU85F.

Article and author information

Author details

  1. Sebastian Gluth

    Department of Psychology, University of Basel, Basel, Switzerland
    For correspondence
    sebastian.gluth@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2241-5103
  2. Nachshon Meiran

    Department of Psychology, Ben-Gurion University of the Negev, Be'er Scheva, Israel
    Competing interests
    The authors declare that no competing interests exist.

Funding

Swiss National Science Foundation (100014_172761)

  • Sebastian Gluth

Israel Science Foundation (381-15)

  • Nachshon Meiran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent, and the study was approved by the Aerztekammer Hamburg, Germany (case # PV4290). All experiments were performed in accordance with the relevant guidelines and regulations.

Copyright

© 2019, Gluth & Meiran

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,737
    views
  • 379
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Gluth
  2. Nachshon Meiran
(2019)
Leave-One-Trial-Out, LOTO, a general approach to link single-trial parameters of cognitive models to neural data
eLife 8:e42607.
https://doi.org/10.7554/eLife.42607

Share this article

https://doi.org/10.7554/eLife.42607

Further reading

    1. Neuroscience
    Matthew R Kleinman, David J Foster
    Research Article

    Sequenced reactivations of hippocampal neurons called replays, concomitant with sharp-wave ripples in the local field potential, are critical for the consolidation of episodic memory, but whether replays depend on the brain’s reward or novelty signals is unknown. Here, we combined chemogenetic silencing of dopamine neurons in ventral tegmental area (VTA) and simultaneous electrophysiological recordings in dorsal hippocampal CA1, in freely behaving male rats experiencing changes to reward magnitude and environmental novelty. Surprisingly, VTA silencing did not prevent ripple increases where reward was increased, but caused dramatic, aberrant ripple increases where reward was unchanged. These increases were associated with increased reverse-ordered replays. On familiar tracks this effect disappeared, and ripples tracked reward prediction error (RPE), indicating that non-VTA reward signals were sufficient to direct replay. Our results reveal a novel dependence of hippocampal replay on dopamine, and a role for a VTA-independent RPE signal that is reliable only in familiar environments.

    1. Neuroscience
    Shuo Zhang, Yan Tian ... Haiyan Wu
    Research Article

    Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.