Leave-One-Trial-Out, LOTO, a general approach to link single-trial parameters of cognitive models to neural data

  1. Sebastian Gluth  Is a corresponding author
  2. Nachshon Meiran
  1. University of Basel, Switzerland
  2. Ben-Gurion University of the Negev, Israel

Abstract

It has become a key goal of model-based cognitive neuroscience to estimate trial-by-trial fluctuations of cognitive model parameters for linking these fluctuations to brain signals. However, previously developed methods were limited by being difficulty to implement, time-consuming, or model-specific. Here, we propose an easy, efficient and general approach to estimating trial-wise changes in parameters: Leave-One-Trial-Out (LOTO). The rationale behind LOTO is that the difference between parameter estimates for the complete dataset and for the dataset with one omitted trial reflects the parameter value in the omitted trial. We show that LOTO is superior to estimating parameter values from single trials and compare it to previously proposed approaches. Furthermore, the method allows distinguishing true variability in a parameter from noise and from other sources of variability. In our view, the practicability and generality of LOTO will advance research on tracking fluctuations in latent cognitive variables and linking them to neural data.

Data availability

The relevant data and computer codes are uploaded on the Open Science Framework (https://osf.io/du85f/) and are freely available.

The following data sets were generated
    1. Gluth S
    2. Meiran N
    (2018) Leave-one-trial-out (LOTO)
    Open Science Framework, 10.17605/OSF.IO/DU85F.

Article and author information

Author details

  1. Sebastian Gluth

    Department of Psychology, University of Basel, Basel, Switzerland
    For correspondence
    sebastian.gluth@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2241-5103
  2. Nachshon Meiran

    Department of Psychology, Ben-Gurion University of the Negev, Be'er Scheva, Israel
    Competing interests
    The authors declare that no competing interests exist.

Funding

Swiss National Science Foundation (100014_172761)

  • Sebastian Gluth

Israel Science Foundation (381-15)

  • Nachshon Meiran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent, and the study was approved by the Aerztekammer Hamburg, Germany (case # PV4290). All experiments were performed in accordance with the relevant guidelines and regulations.

Copyright

© 2019, Gluth & Meiran

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,681
    views
  • 373
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Gluth
  2. Nachshon Meiran
(2019)
Leave-One-Trial-Out, LOTO, a general approach to link single-trial parameters of cognitive models to neural data
eLife 8:e42607.
https://doi.org/10.7554/eLife.42607

Share this article

https://doi.org/10.7554/eLife.42607

Further reading

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.

    1. Neuroscience
    Luis Alberto Bezares Calderón, Réza Shahidi, Gáspár Jékely
    Research Article

    Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.