A composition-dependent molecular clutch between T cell signaling condensates and actin

  1. Jonathon A Ditlev
  2. Anthony R Vega
  3. Darius Vasco Köster
  4. Xiaolei Su
  5. Tomomi Tani
  6. Ashley M Lakoduk
  7. Ronald D Vale
  8. Satyajit Mayor  Is a corresponding author
  9. Khuloud Jaqaman  Is a corresponding author
  10. Michael K Rosen  Is a corresponding author
  1. Marine Biological Laboratory, United States
  2. University of Texas Southwestern Medical Center, United States

Abstract

During T cell activation, biomolecular condensates form at the immunological synapse (IS) through multivalency-driven phase separation of LAT, Grb2, Sos1, SLP-76, Nck, and WASP. These condensates move radially at the IS, traversing successive radially-oriented and concentric actin networks. To understand this movement, we biochemically reconstituted LAT condensates with actomyosin filaments. We found that basic regions of Nck and N-WASP/WASP promote association and co-movement of LAT condensates with actin, indicating conversion of weak individual affinities to high collective affinity upon phase separation. Condensates lacking these components were propelled differently, without strong actin adhesion. In cells, LAT condensates lost Nck as radial actin transitioned to the concentric network, and engineered condensates constitutively binding actin moved aberrantly. Our data show that Nck and WASP form a clutch between LAT condensates and actin in vitro and suggest that compositional changes may enable condensate movement by distinct actin networks in different regions of the IS.

Data availability

Data are available in the BioStudies database (http://www.ebi.ac.uk/biostudies) under accession number S-BIAD6. Image data are available in the Image Data Resource (IDR) (https://idr.openmicroscopy.org) under accession number idr0055. Condensate analysis code is available on GitHub at https://github.com/kjaqaman/CondensateAnalysis. Colocalization analysis code is available on GitHub at https://github.com/kjaqaman/ColocPt2Cont. Cluster tracking analysis code is available on GitHub at https://github.com/DanuserLab/u-track. Polarization microscopy analysis code is available on GitHub at https://github.com/mattersoflight/Instantaneous-PolScope.

The following data sets were generated

Article and author information

Author details

  1. Jonathon A Ditlev

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8287-7700
  2. Anthony R Vega

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4464-6482
  3. Darius Vasco Köster

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8530-5476
  4. Xiaolei Su

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tomomi Tani

    Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashley M Lakoduk

    Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ronald D Vale

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3460-2758
  8. Satyajit Mayor

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    For correspondence
    mayor@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9842-6963
  9. Khuloud Jaqaman

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    khuloud.jaqaman@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael K Rosen

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.rosen@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0775-7917

Funding

Howard Hughes Medical Institute

  • Ronald D Vale
  • Michael K Rosen

Cancer Research Institute

  • Xiaolei Su

National Institutes of Health (R35 GM119619)

  • Khuloud Jaqaman

National Institutes of Health (F32 DK101188)

  • Jonathon A Ditlev

Welch Foundation (I-1544)

  • Michael K Rosen

Department of Science and Technology, Government of India (J C Bose Fellowship)

  • Satyajit Mayor

Margadarshi Fellowship from the Wellcome Trust - Department of Biotechnology, India Alliance (IA/M/15/1/502018)

  • Satyajit Mayor

National Institutes of Health (R01 GM100160)

  • Tomomi Tani

UT Southwestern Endowed Scholars Program

  • Khuloud Jaqaman

National Research Service Award F32 (F32 DK101188)

  • Jonathon A Ditlev

CPRIT Training Grant (RP140110 PI: Michael White)

  • Anthony R Vega

AXA Research Fund and the National Centre for Biological Sciences, Tata Institute for Fundamental Research

  • Darius Vasco Köster

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Ditlev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,051
    views
  • 842
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathon A Ditlev
  2. Anthony R Vega
  3. Darius Vasco Köster
  4. Xiaolei Su
  5. Tomomi Tani
  6. Ashley M Lakoduk
  7. Ronald D Vale
  8. Satyajit Mayor
  9. Khuloud Jaqaman
  10. Michael K Rosen
(2019)
A composition-dependent molecular clutch between T cell signaling condensates and actin
eLife 8:e42695.
https://doi.org/10.7554/eLife.42695

Share this article

https://doi.org/10.7554/eLife.42695

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.