A composition-dependent molecular clutch between T cell signaling condensates and actin

  1. Jonathon A Ditlev
  2. Anthony R Vega
  3. Darius Vasco Köster
  4. Xiaolei Su
  5. Tomomi Tani
  6. Ashley M Lakoduk
  7. Ronald D Vale
  8. Satyajit Mayor  Is a corresponding author
  9. Khuloud Jaqaman  Is a corresponding author
  10. Michael K Rosen  Is a corresponding author
  1. Marine Biological Laboratory, United States
  2. University of Texas Southwestern Medical Center, United States

Abstract

During T cell activation, biomolecular condensates form at the immunological synapse (IS) through multivalency-driven phase separation of LAT, Grb2, Sos1, SLP-76, Nck, and WASP. These condensates move radially at the IS, traversing successive radially-oriented and concentric actin networks. To understand this movement, we biochemically reconstituted LAT condensates with actomyosin filaments. We found that basic regions of Nck and N-WASP/WASP promote association and co-movement of LAT condensates with actin, indicating conversion of weak individual affinities to high collective affinity upon phase separation. Condensates lacking these components were propelled differently, without strong actin adhesion. In cells, LAT condensates lost Nck as radial actin transitioned to the concentric network, and engineered condensates constitutively binding actin moved aberrantly. Our data show that Nck and WASP form a clutch between LAT condensates and actin in vitro and suggest that compositional changes may enable condensate movement by distinct actin networks in different regions of the IS.

Data availability

Data are available in the BioStudies database (http://www.ebi.ac.uk/biostudies) under accession number S-BIAD6. Image data are available in the Image Data Resource (IDR) (https://idr.openmicroscopy.org) under accession number idr0055. Condensate analysis code is available on GitHub at https://github.com/kjaqaman/CondensateAnalysis. Colocalization analysis code is available on GitHub at https://github.com/kjaqaman/ColocPt2Cont. Cluster tracking analysis code is available on GitHub at https://github.com/DanuserLab/u-track. Polarization microscopy analysis code is available on GitHub at https://github.com/mattersoflight/Instantaneous-PolScope.

The following data sets were generated

Article and author information

Author details

  1. Jonathon A Ditlev

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8287-7700
  2. Anthony R Vega

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4464-6482
  3. Darius Vasco Köster

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8530-5476
  4. Xiaolei Su

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tomomi Tani

    Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashley M Lakoduk

    Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ronald D Vale

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3460-2758
  8. Satyajit Mayor

    Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, United States
    For correspondence
    mayor@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9842-6963
  9. Khuloud Jaqaman

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    khuloud.jaqaman@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael K Rosen

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.rosen@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0775-7917

Funding

Howard Hughes Medical Institute

  • Ronald D Vale
  • Michael K Rosen

Cancer Research Institute

  • Xiaolei Su

National Institutes of Health (R35 GM119619)

  • Khuloud Jaqaman

National Institutes of Health (F32 DK101188)

  • Jonathon A Ditlev

Welch Foundation (I-1544)

  • Michael K Rosen

Department of Science and Technology, Government of India (J C Bose Fellowship)

  • Satyajit Mayor

Margadarshi Fellowship from the Wellcome Trust - Department of Biotechnology, India Alliance (IA/M/15/1/502018)

  • Satyajit Mayor

National Institutes of Health (R01 GM100160)

  • Tomomi Tani

UT Southwestern Endowed Scholars Program

  • Khuloud Jaqaman

National Research Service Award F32 (F32 DK101188)

  • Jonathon A Ditlev

CPRIT Training Grant (RP140110 PI: Michael White)

  • Anthony R Vega

AXA Research Fund and the National Centre for Biological Sciences, Tata Institute for Fundamental Research

  • Darius Vasco Köster

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Ditlev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,943
    views
  • 833
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathon A Ditlev
  2. Anthony R Vega
  3. Darius Vasco Köster
  4. Xiaolei Su
  5. Tomomi Tani
  6. Ashley M Lakoduk
  7. Ronald D Vale
  8. Satyajit Mayor
  9. Khuloud Jaqaman
  10. Michael K Rosen
(2019)
A composition-dependent molecular clutch between T cell signaling condensates and actin
eLife 8:e42695.
https://doi.org/10.7554/eLife.42695

Share this article

https://doi.org/10.7554/eLife.42695

Further reading

    1. Biochemistry and Chemical Biology
    Shu-Ting Zhang, Shi-Kai Deng ... Ning-Yi Zhou
    Research Article

    1-Naphthylamine (1NA), which is harmful to human and aquatic animals, has been used widely in the manufacturing of dyes, pesticides, and rubber antioxidants. Nevertheless, little is known about its environmental behavior and no bacteria have been reported to use it as the growth substrate. Herein, we describe a pathway for 1NA degradation in the isolate Pseudomonas sp. strain JS3066, determine the structure and mechanism of the enzyme NpaA1 that catalyzes the initial reaction, and reveal how the pathway evolved. From genetic and enzymatic analysis, a five gene-cluster encoding a dioxygenase system was determined to be responsible for the initial steps in 1NA degradation through glutamylation of 1NA. The γ-glutamylated 1NA was subsequently oxidized to 1,2-dihydroxynaphthalene which was further degraded by the well-established pathway of naphthalene degradation via catechol. A glutamine synthetase-like (GS-like) enzyme (NpaA1) initiates 1NA glutamylation, and this enzyme exhibits a broad substrate selectivity toward a variety of anilines and naphthylamine derivatives. Structural analysis revealed that the aromatic residues in the 1NA entry tunnel and the V201 site in the large substrate-binding pocket significantly influence NpaA1’s substrate preferences. The findings enhance understanding of degrading polycyclic aromatic amines, and will also enable the application of bioremediation at naphthylamine contaminated sites.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qiong He, Miao-Miao Zhao ... Jin-Kui Yang
    Research Article

    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.