Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response

  1. Harshad Ghodke
  2. Bishnu P Paudel
  3. Jacob S Lewis
  4. Slobodan Jergic
  5. Kamya Gopal
  6. Zachary J Romero
  7. Elizabeth A Wood
  8. Roger Woodgate
  9. Michael M Cox
  10. Antoine M van Oijen  Is a corresponding author
  1. University of Wollongong, Australia
  2. University of Wisconsin-Madison, United States
  3. National Institutes of Health, United States

Abstract

The RecA protein orchestrates the cellular response to DNA damage via its multiple roles in the bacterial SOS response. Lack of tools that provide unambiguous access to the various RecA states within the cell have prevented understanding of the spatial and temporal changes in RecA structure/function that underlie control of the damage response. Here, we develop a monomeric C-terminal fragment of the l repressor as a novel fluorescent probe that specifically interacts with RecA filaments on single-stranded DNA (RecA*). Single-molecule imaging techniques in live cells demonstrate that RecA is largely sequestered in storage structures during normal metabolism. Upon DNA damage, the storage structures dissolve and the cytosolic pool of RecA rapidly nucleates to form early SOS-signaling complexes, maturing into DNA-bound RecA bundles at later time points. Both before and after SOS induction, RecA* largely appears at locations distal from replisomes. Upon completion of repair, RecA storage structures reform.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Codes used for analysis are publicly available (in GitHub as described in previous publications). Scripts using these codes are also now provided in this submission as Source Code files for the relevant figures.

Article and author information

Author details

  1. Harshad Ghodke

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6628-876X
  2. Bishnu P Paudel

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacob S Lewis

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Slobodan Jergic

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Kamya Gopal

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zachary J Romero

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth A Wood

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Roger Woodgate

    Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael M Cox

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3606-5722
  10. Antoine M van Oijen

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    For correspondence
    vanoijen@uow.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1794-5161

Funding

Australian Research Council (DP150100956)

  • Antoine M van Oijen

National Institutes of Health (GM32335)

  • Michael M Cox

Australian Research Council (FL140100027)

  • Antoine M van Oijen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,080
    views
  • 638
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Harshad Ghodke
  2. Bishnu P Paudel
  3. Jacob S Lewis
  4. Slobodan Jergic
  5. Kamya Gopal
  6. Zachary J Romero
  7. Elizabeth A Wood
  8. Roger Woodgate
  9. Michael M Cox
  10. Antoine M van Oijen
(2019)
Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response
eLife 8:e42761.
https://doi.org/10.7554/eLife.42761

Share this article

https://doi.org/10.7554/eLife.42761

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Fridtjof Brauns, Nikolas H Claussen ... Boris I Shraiman
    Research Article

    Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.

    1. Cell Biology
    2. Physics of Living Systems
    Pyae Hein Htet, Edward Avezov, Eric Lauga
    Research Article

    The endoplasmic reticulum (ER), the largest cellular compartment, harbours the machinery for the biogenesis of secretory proteins and lipids, calcium storage/mobilisation, and detoxification. It is shaped as layered membranous sheets interconnected with a network of tubules extending throughout the cell. Understanding the influence of the ER morphology dynamics on molecular transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations. It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its content. It has been recently proposed that intra-luminal transport may be enabled by active contractions of ER tubules. To surmount the barriers to empirical studies of the minuscule spatial and temporal scales relevant to ER nanofluidics, here we exploit the principles of viscous fluid dynamics to generate a theoretical physical model emulating in silico the content motion in actively contracting nanoscopic tubular networks. The computational model reveals the luminal particle speeds, and their impact in facilitating active transport, of the active contractile behaviour of the different ER components along various time–space parameters. The results of the model indicate that reproducing transport with velocities similar to those reported experimentally in single-particle tracking would require unrealistically high values of tubule contraction site length and rate. Considering further nanofluidic scenarios, we show that width contractions of the ER’s flat domains (perinuclear sheets) generate local flows with only a short-range effect on luminal transport. Only contractions of peripheral sheets can reproduce experimental measurements, provided they are able to contract fast enough.