1. Cell Biology
  2. Plant Biology
Download icon

Live cell imaging of meiosis in Arabidopsis thaliana

  1. Maria A Prusicki
  2. Emma M Keizer
  3. Rik Peter van Rosmalen
  4. Shinichiro Komaki
  5. Felix Seifert
  6. Katja Müller
  7. Erik Wijnker
  8. Christian Fleck
  9. Arp Schnittger  Is a corresponding author
  1. University of Hamburg, Germany
  2. Wageningen University, Netherlands
Tools and Resources
  • Cited 16
  • Views 5,043
  • Annotations
Cite this article as: eLife 2019;8:e42834 doi: 10.7554/eLife.42834

Abstract

To follow the dynamics of meiosis in the model plant Arabidopsis, we have established a live cell imaging setup to observe male meiocytes. Our method is based on the concomitant visualization of microtubules (MTs) and a meiotic cohesin subunit that allows following five cellular parameters: cell shape, MT array, nucleus position, nucleolus position, and chromatin condensation. We find that the states of these parameters are not randomly associated and identify 11 cellular states, referred to as landmarks, which occur much more frequently than closely related ones, indicating that they are convergence points during meiotic progression. As a first application of our system, we revisited a previously identified mutant in the meiotic A-type cyclin TARDY ASYNCHRONOUS MEIOSIS (TAM). Our imaging system enabled us to reveal both qualitatively and quantitatively altered landmarks in tam, foremost the formation of previously not recognized ectopic spindle- or phragmoplast-like structures that arise without attachment to chromosomes.

Article and author information

Author details

  1. Maria A Prusicki

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3755-3402
  2. Emma M Keizer

    Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
  3. Rik Peter van Rosmalen

    Department of Agrotechnology and Food Sciences; Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6911-3298
  4. Shinichiro Komaki

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1189-288X
  5. Felix Seifert

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    Felix Seifert, is affiliated with CropSeq bioinformatics. The author has no other competing interests to declare.
  6. Katja Müller

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
  7. Erik Wijnker

    Department of Plant Science, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
  8. Christian Fleck

    Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
  9. Arp Schnittger

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    For correspondence
    arp.schnittger@uni-hamburg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7067-0091

Funding

European Union (ITN-606956)

  • Maria A Prusicki
  • Erik Wijnker
  • Arp Schnittger

University of Hamburg (Core funding)

  • Maria A Prusicki
  • Shinichiro Komaki
  • Felix Seifert
  • Katja Müller
  • Erik Wijnker
  • Arp Schnittger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Publication history

  1. Received: October 14, 2018
  2. Accepted: May 17, 2019
  3. Accepted Manuscript published: May 20, 2019 (version 1)
  4. Version of Record published: June 11, 2019 (version 2)

Copyright

© 2019, Prusicki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,043
    Page views
  • 767
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Leonie Zeitler et al.
    Research Article

    Interleukin-4-induced-1 (IL4i1) is an amino acid oxidase secreted from immune cells. Recent observations have suggested that IL4i1 is pro-tumorigenic via unknown mechanisms. As IL4i1 has homologues in snake venoms (LAAO, L-amino acid oxidases), we used comparative approaches to gain insight into the mechanistic basis of how conserved amino acid oxidases regulate cell fate and function. Using mammalian expressed recombinant proteins, we found venom LAAO kills cells via hydrogen peroxide generation. By contrast, mammalian IL4i1 is non-cytotoxic and instead elicits a cell productive gene expression program inhibiting ferroptotic redox death by generating indole-3-pyruvate (I3P) from tryptophan. I3P suppresses ferroptosis by direct free radical scavenging and through the activation of an anti-oxidative gene expression program. Thus, the pro-tumor effects of IL4i1 are likely mediated by local anti-ferroptotic pathways via aromatic amino acid metabolism, arguing that an IL4i1 inhibitor may modulate tumor cell death pathways.

    1. Cell Biology
    2. Neuroscience
    Richard Sando, Thomas C Südhof
    Research Article

    Neural circuit assembly in the brain requires precise establishment of synaptic connections, but the mechanisms of synapse assembly remain incompletely understood. Latrophilins are postsynaptic adhesion-GPCRs that engage in trans-synaptic complexes with presynaptic teneurins and FLRTs. In mouse CA1-region neurons, Latrophilin-2 and Latrophilin-3 are essential for formation of entorhinal-cortex-derived and Schaffer-collateral-derived synapses, respectively. However, it is unknown whether latrophilins function as GPCRs in synapse formation. Here, we show that Latrophilin-2 and Latrophilin-3 exhibit constitutive GPCR activity that increases cAMP levels, which was blocked by a mutation interfering with G-protein and arrestin interactions of GPCRs. The same mutation impaired the ability of Latrophilin-2 and Latrophilin-3 to rescue the synapse-loss phenotype in Latrophilin-2 and Latrophilin-3 knockout neurons in vivo. Our results suggest that Latrophilin-2 and Latrophilin-3 require GPCR signaling in synapse formation, indicating that latrophilins promote synapse formation in the hippocampus by activating a classical GPCR-signaling pathway.