1. Cell Biology
  2. Plant Biology
Download icon

Live cell imaging of meiosis in Arabidopsis thaliana

  1. Maria A Prusicki
  2. Emma M Keizer
  3. Rik Peter van Rosmalen
  4. Shinichiro Komaki
  5. Felix Seifert
  6. Katja Müller
  7. Erik Wijnker
  8. Christian Fleck
  9. Arp Schnittger  Is a corresponding author
  1. University of Hamburg, Germany
  2. Wageningen University, Netherlands
Tools and Resources
  • Cited 24
  • Views 5,713
  • Annotations
Cite this article as: eLife 2019;8:e42834 doi: 10.7554/eLife.42834

Abstract

To follow the dynamics of meiosis in the model plant Arabidopsis, we have established a live cell imaging setup to observe male meiocytes. Our method is based on the concomitant visualization of microtubules (MTs) and a meiotic cohesin subunit that allows following five cellular parameters: cell shape, MT array, nucleus position, nucleolus position, and chromatin condensation. We find that the states of these parameters are not randomly associated and identify 11 cellular states, referred to as landmarks, which occur much more frequently than closely related ones, indicating that they are convergence points during meiotic progression. As a first application of our system, we revisited a previously identified mutant in the meiotic A-type cyclin TARDY ASYNCHRONOUS MEIOSIS (TAM). Our imaging system enabled us to reveal both qualitatively and quantitatively altered landmarks in tam, foremost the formation of previously not recognized ectopic spindle- or phragmoplast-like structures that arise without attachment to chromosomes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Maria A Prusicki

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3755-3402
  2. Emma M Keizer

    Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
  3. Rik Peter van Rosmalen

    Department of Agrotechnology and Food Sciences; Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6911-3298
  4. Shinichiro Komaki

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1189-288X
  5. Felix Seifert

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    Felix Seifert, is affiliated with CropSeq bioinformatics. The author has no other competing interests to declare.
  6. Katja Müller

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    Competing interests
    No competing interests declared.
  7. Erik Wijnker

    Department of Plant Science, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
  8. Christian Fleck

    Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
    Competing interests
    No competing interests declared.
  9. Arp Schnittger

    Department of Developmental Biology, University of Hamburg, Hamburg, Germany
    For correspondence
    arp.schnittger@uni-hamburg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7067-0091

Funding

European Union (ITN-606956)

  • Maria A Prusicki
  • Erik Wijnker
  • Arp Schnittger

University of Hamburg (Core funding)

  • Maria A Prusicki
  • Shinichiro Komaki
  • Felix Seifert
  • Katja Müller
  • Erik Wijnker
  • Arp Schnittger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Publication history

  1. Received: October 14, 2018
  2. Accepted: May 17, 2019
  3. Accepted Manuscript published: May 20, 2019 (version 1)
  4. Version of Record published: June 11, 2019 (version 2)

Copyright

© 2019, Prusicki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,713
    Page views
  • 827
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Lisa M Strong et al.
    Research Article Updated

    Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double-membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12–5–16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12–5–16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven-bladedß -propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207–230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 ß-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12–5–16 L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12–5–16 L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand and ATG8 lipidation on the other.

    1. Cell Biology
    Laura Le Pelletier et al.
    Research Article

    Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived-stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25y) or older women (>60y). Increased cell passages of young-donor ASCs (in vitro aging), resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated-protein-kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.