1. Cell Biology
Download icon

A systematic approach to identify recycling endocytic cargo depending on the GARP complex

  1. Sebastian Eising
  2. Lisa Thiele
  3. Florian Fröhlich  Is a corresponding author
  1. University of Osnabrück, Germany
Research Advance
  • Cited 11
  • Views 2,042
  • Annotations
Cite this article as: eLife 2019;8:e42837 doi: 10.7554/eLife.42837


Proteins and lipids of the plasma membrane underlie constant remodeling via a combination of the secretory- and the endocytic pathway. In the yeast endocytic pathway, cargo is sorted for recycling to the plasma membrane or degradation in vacuoles. Previously we have shown a role for the GARP complex in sphingolipid sorting and homeostasis (Fröhlich et al. 2015). However, the majority of cargo sorted in a GARP dependent process remain largely unknown. Here we use auxin induced degradation of GARP combined with mass spectrometry based vacuolar proteomics and lipidomics to show that recycling of two specific groups of proteins, the amino-phospholipid flippases and cell wall synthesis proteins depends on a functional GARP complex. Our results suggest that mis-sorting of flippases and remodeling of the lipid composition are the first occurring defects in GARP mutants. Our assay can be adapted to systematically map cargo of the entire endocytic pathway.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3 and 4.

Article and author information

Author details

  1. Sebastian Eising

    Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisa Thiele

    Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian Fröhlich

    Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8307-2189


Deutsche Forschungsgemeinschaft (FR 3647/2-1)

  • Florian Fröhlich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Publication history

  1. Received: October 19, 2018
  2. Accepted: January 29, 2019
  3. Accepted Manuscript published: January 29, 2019 (version 1)
  4. Version of Record published: February 13, 2019 (version 2)


© 2019, Eising et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,042
    Page views
  • 409
  • 11

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Stephanie E Crilly et al.
    Research Article Updated

    The prevailing model for the variety in drug responses is that different drugs stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand generates different GPCR active states based on the immediate environment of receptors is not known. Here we address this question using spatially resolved imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neuronal cells. We have shown that Golgi and surface pools of DOR both inhibit cAMP, but engage distinct conformational biosensors in response to the same ligand in rat neuroendocrine cells. Further, DOR recruits arrestins on the surface but not on the Golgi. Our results suggest that the local environment determines the active states of receptors for any given drug, allowing GPCRs to couple to different effectors at different subcellular locations.

    1. Cell Biology
    2. Developmental Biology
    Keiichiro Koiwai et al.
    Tools and Resources

    Crustacean aquaculture is expected to be a major source of fishery commodities in the near future. Hemocytes are key players of the immune system in shrimps; however, their classification, maturation, and differentiation are still under debate. To date, only discrete and inconsistent information on the classification of shrimp hemocytes has been reported, showing that the morphological characteristics are not sufficient to resolve their actual roles. Our present study using single-cell RNA sequencing, revealed six types of hemocytes of Marsupenaeus japonicus based on their transcriptional profiles. We identified markers of each subpopulation and predicted the differentiation pathways involved in their maturation. We also predicted cell growth factors that might play crucial roles in hemocyte differentiation. Different immune roles among these subpopulations were suggested from the analysis of differentially expressed immune-related genes. These results provide a unified classification of shrimp hemocytes, which improves the understanding of its immune system.