Genetic analysis reveals functions of atypical polyubiquitin chains

  1. Fernando Meza Gutierrez
  2. Deniz Simsek
  3. Arda Mizrak
  4. Adam Deutschbauer
  5. Hannes Braberg
  6. Jeffrey Johnson
  7. Jiewei Xu
  8. Michael Shales
  9. Michelle Nguyen
  10. Raquel Tamse-Kuehn
  11. Curt Palm
  12. Lars M Steinmetz
  13. Nevan J Krogan
  14. David P Toczyski  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Amgen Research, United States
  3. Lawrence Berkeley National Laboratory, United States
  4. Stanford University, United States
  5. University of California San Francisco, United States

Abstract

Although polyubiquitin chains linked through all lysines of ubiquitin exist, specific functions are well-established only for lysine-48 and lysine-63 linkages in Saccharomyces cerevisiae. To uncover pathways regulated by distinct linkages, genetic interactions between a gene deletion library and a panel of lysine-to-arginine ubiquitin mutants were systematically identified. The K11R mutant had strong genetic interactions with threonine biosynthetic genes. Consistently, we found that K11R mutants import threonine poorly. The K11R mutant also exhibited a strong genetic interaction with a subunit of the anaphase-promoting complex (APC), suggesting a role in cell cycle regulation. K11-linkages are important for vertebrate APC function, but this was not previously described in yeast. We show that the yeast APC also modifies substrates with K11-linkages in vitro, and that those chains contribute to normal APC-substrate turnover in vivo. This study reveals comprehensive genetic interactomes of polyubiquitin chains and characterizes the role of K11-chains in two biological pathways.

Data availability

All datasets generated are included as Supplementary Files 4 (SGA dataset) and 5 (quantitative proteomics).

Article and author information

Author details

  1. Fernando Meza Gutierrez

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5601-7202
  2. Deniz Simsek

    Amgen Research, South San Francisco, United States
    Competing interests
    Deniz Simsek, is affiliated with Amgen Research. The author has no other competing interests to declare..
  3. Arda Mizrak

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Adam Deutschbauer

    Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Hannes Braberg

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Jeffrey Johnson

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Jiewei Xu

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Michael Shales

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Michelle Nguyen

    Stanford Genome Technology Center, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  10. Raquel Tamse-Kuehn

    Stanford Genome Technology Center, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  11. Curt Palm

    Stanford Genome Technology Center, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  12. Lars M Steinmetz

    Genetics, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  13. Nevan J Krogan

    Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. David P Toczyski

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    dpt4darwin@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5924-0365

Funding

National Institutes of Health (R35 GM118104)

  • David P Toczyski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Meza Gutierrez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fernando Meza Gutierrez
  2. Deniz Simsek
  3. Arda Mizrak
  4. Adam Deutschbauer
  5. Hannes Braberg
  6. Jeffrey Johnson
  7. Jiewei Xu
  8. Michael Shales
  9. Michelle Nguyen
  10. Raquel Tamse-Kuehn
  11. Curt Palm
  12. Lars M Steinmetz
  13. Nevan J Krogan
  14. David P Toczyski
(2018)
Genetic analysis reveals functions of atypical polyubiquitin chains
eLife 7:e42955.
https://doi.org/10.7554/eLife.42955

Share this article

https://doi.org/10.7554/eLife.42955

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.