Dissociation rate compensation mechanism for budding yeast pioneer transcription factors

  1. Benjamin T Donovan
  2. Hengye Chen
  3. Caroline Jipa
  4. Lu Bai
  5. Michael G Poirier  Is a corresponding author
  1. Ohio State University, United States
  2. The Pennsylvania State University, United States

Abstract

Nucleosomes restrict the occupancy of most transcription factors (TF) by reducing binding and accelerating dissociation, while a small group of TFs have high affinities to nucleosome-embedded sites and facilitate nucleosome displacement. To mechanistically understand this process, we investigated two S. cerevisiae TFs, Reb1 and Cbf1. We show these factors bind their sites within nucleosomes with similar affinities to naked DNA, trapping a partially unwrapped nucleosome without histone eviction. Both the binding and dissociation rates of Reb1 and Cbf1 are significantly slower at the nucleosomal sites relative to DNA, demonstrating that the high affinities are achieved by increasing the dwell time on nucleosomes to compensate for reduced binding. Reb1 also shows slow migration rate in the yeast nuclei. These properties are similar to human pioneer factors (PFs), suggesting the mechanism of nucleosome targeting is conserved from yeast to human.

Data availability

All analyzed data generated is included in the manuscript. In supplementary file 1, we include 6 supplementary tables. Table S1 documents all binding affinity measurements from this study. Table S2 documents measured binding rates from single molecule experiments. Table S3 documents relative binding affinities (Nuc/DNA) for ensemble and single molecule experiments. Table S4 documents the primers for in vitro experiments. Table S5 documents quality control information from single molecule experiments. Table S6 documents the primers used for FRAP experiments. Videos supporting this study have been deposited to Zenodo and are available under the doi:10.5281/zenodo.2595208

The following data sets were generated

Article and author information

Author details

  1. Benjamin T Donovan

    Biophysics Graduate Program, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hengye Chen

    Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline Jipa

    Department of Physics, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lu Bai

    Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael G Poirier

    Department of Physics, Ohio State University, Columbus, United States
    For correspondence
    poirier.18@osu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1563-5792

Funding

National Institutes of Health (R01 GM121858)

  • Lu Bai
  • Michael G Poirier

National Institutes of Health (R01 GM121966)

  • Michael G Poirier

National Institutes of Health (T32 GM086252)

  • Benjamin T Donovan

National Science Foundation (1516979)

  • Michael G Poirier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Donovan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,943
    views
  • 573
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin T Donovan
  2. Hengye Chen
  3. Caroline Jipa
  4. Lu Bai
  5. Michael G Poirier
(2019)
Dissociation rate compensation mechanism for budding yeast pioneer transcription factors
eLife 8:e43008.
https://doi.org/10.7554/eLife.43008

Share this article

https://doi.org/10.7554/eLife.43008

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.