Abstract

Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3 and Figure supplements 1, 3, 4, 7, 8 and 9.

Article and author information

Author details

  1. Chaolie Huang

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara Wagner-Valladolid

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Amberley D Stephens

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7303-6392
  4. Raimund Jung

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Chetan Poudel

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tessa Sinnige

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9353-126X
  7. Marie C Lechler

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicole Schlörit

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Meng Lu

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9311-2666
  10. Romain F Laine

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2151-4487
  11. Claire H Michel

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  13. Clemens F Kaminski

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5194-0962
  14. Gabriele S Kaminski Schierle

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    gsk20@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  15. Della C David

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    For correspondence
    della.david@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8597-9470

Funding

Deutsches Zentrum für Neurodegenerative Erkrankungen

  • Della C David

Biotechnology and Biological Sciences Research Council (BB/R021805/1)

  • Romain F Laine

European Commission (Marie Curie International Reintegration grant 322120)

  • Della C David

Engineering and Physical Sciences Research Council

  • Clemens F Kaminski

Wellcome (203249/Z/16/Z)

  • Gabriele S Kaminski Schierle

Medical Research Council (MR/N012453/1)

  • Gabriele S Kaminski Schierle

Alzheimer's Research UK (ARUK-PG2013-14)

  • Gabriele S Kaminski Schierle

Infinitus China Ltd

  • Clemens F Kaminski
  • Gabriele S Kaminski Schierle

Alzheimer's Research UK (Travel grant)

  • Amberley D Stephens

Biotechnology and Biological Sciences Research Council (BB/P027431/1)

  • Romain F Laine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,736
    views
  • 844
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaolie Huang
  2. Sara Wagner-Valladolid
  3. Amberley D Stephens
  4. Raimund Jung
  5. Chetan Poudel
  6. Tessa Sinnige
  7. Marie C Lechler
  8. Nicole Schlörit
  9. Meng Lu
  10. Romain F Laine
  11. Claire H Michel
  12. Michele Vendruscolo
  13. Clemens F Kaminski
  14. Gabriele S Kaminski Schierle
  15. Della C David
(2019)
Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in C. elegans
eLife 8:e43059.
https://doi.org/10.7554/eLife.43059

Share this article

https://doi.org/10.7554/eLife.43059

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.