Abstract

Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3 and Figure supplements 1, 3, 4, 7, 8 and 9.

Article and author information

Author details

  1. Chaolie Huang

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara Wagner-Valladolid

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Amberley D Stephens

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7303-6392
  4. Raimund Jung

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Chetan Poudel

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tessa Sinnige

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9353-126X
  7. Marie C Lechler

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicole Schlörit

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Meng Lu

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9311-2666
  10. Romain F Laine

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2151-4487
  11. Claire H Michel

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  13. Clemens F Kaminski

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5194-0962
  14. Gabriele S Kaminski Schierle

    Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    gsk20@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  15. Della C David

    Protein Aggregation and Aging, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
    For correspondence
    della.david@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8597-9470

Funding

Deutsches Zentrum für Neurodegenerative Erkrankungen

  • Della C David

Biotechnology and Biological Sciences Research Council (BB/R021805/1)

  • Romain F Laine

European Commission (Marie Curie International Reintegration grant 322120)

  • Della C David

Engineering and Physical Sciences Research Council

  • Clemens F Kaminski

Wellcome (203249/Z/16/Z)

  • Gabriele S Kaminski Schierle

Medical Research Council (MR/N012453/1)

  • Gabriele S Kaminski Schierle

Alzheimer's Research UK (ARUK-PG2013-14)

  • Gabriele S Kaminski Schierle

Infinitus China Ltd

  • Clemens F Kaminski
  • Gabriele S Kaminski Schierle

Alzheimer's Research UK (Travel grant)

  • Amberley D Stephens

Biotechnology and Biological Sciences Research Council (BB/P027431/1)

  • Romain F Laine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: October 22, 2018
  2. Accepted: May 2, 2019
  3. Accepted Manuscript published: May 3, 2019 (version 1)
  4. Version of Record published: May 17, 2019 (version 2)

Copyright

© 2019, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,441
    Page views
  • 810
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaolie Huang
  2. Sara Wagner-Valladolid
  3. Amberley D Stephens
  4. Raimund Jung
  5. Chetan Poudel
  6. Tessa Sinnige
  7. Marie C Lechler
  8. Nicole Schlörit
  9. Meng Lu
  10. Romain F Laine
  11. Claire H Michel
  12. Michele Vendruscolo
  13. Clemens F Kaminski
  14. Gabriele S Kaminski Schierle
  15. Della C David
(2019)
Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in C. elegans
eLife 8:e43059.
https://doi.org/10.7554/eLife.43059

Share this article

https://doi.org/10.7554/eLife.43059

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.