Cell-based HTS identifies a chemical chaperone for preventing ER protein aggregation and proteotoxicity

Abstract

The endoplasmic reticulum (ER) is responsible for folding secretory and membrane proteins, but disturbed ER proteostasis may lead to protein aggregation and subsequent cellular and clinical pathologies. Chemical chaperones have recently emerged as a potential therapeutic approach for ER stress-related diseases. Here, we identified 2-phenylimidazo[2,1-b]benzothiazole derivatives (IBTs) as chemical chaperones in a cell-based high-throughput screen. Biochemical and chemical biology approaches revealed that IBT21 directly binds to unfolded or misfolded proteins and inhibits protein aggregation. Finally, IBT21 prevented cell death caused by chemically induced ER stress and by a proteotoxin, an aggression-prone prion protein. Taken together, our data show the promise of IBTs as potent chemical chaperones that can ameliorate diseases resulting from protein aggregation under ER stress.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Keisuke Kitakaze

    Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4852-1257
  2. Shusuke Taniuchi

    Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Eri Kawano

    Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yoshimasa Hamada

    Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Masato Miyake

    Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Miho Oyadomari

    Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hirotatsu Kojima

    Drug Discovery Initiative (DDI), The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Hidetaka Kosako

    Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Tomoko Kuribara

    Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Suguru Yoshida

    Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5888-9330
  11. Takamitsu Hosoya

    Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Seiichi Oyadomari

    Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
    For correspondence
    oyadomar@tokushima-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6766-1485

Funding

Japan Agency for Medical Research and Development (JP18nk0101336)

  • Seiichi Oyadomari

Japan Agency for Medical Research and Development (JP17am0101086)

  • Hirotatsu Kojima

Platform Project for Supporting Drug Discovery and Life Science Research, Basis for Supporting Innovative Drug Discovery and Life Science Research (JP18am0101098)

  • Takamitsu Hosoya

a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (16H05222)

  • Seiichi Oyadomari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew D Shoulders, Massachusetts Institute of Technology, United States

Version history

  1. Received: November 1, 2018
  2. Accepted: November 24, 2019
  3. Accepted Manuscript published: December 17, 2019 (version 1)
  4. Version of Record published: December 19, 2019 (version 2)

Copyright

© 2019, Kitakaze et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,157
    views
  • 598
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keisuke Kitakaze
  2. Shusuke Taniuchi
  3. Eri Kawano
  4. Yoshimasa Hamada
  5. Masato Miyake
  6. Miho Oyadomari
  7. Hirotatsu Kojima
  8. Hidetaka Kosako
  9. Tomoko Kuribara
  10. Suguru Yoshida
  11. Takamitsu Hosoya
  12. Seiichi Oyadomari
(2019)
Cell-based HTS identifies a chemical chaperone for preventing ER protein aggregation and proteotoxicity
eLife 8:e43302.
https://doi.org/10.7554/eLife.43302

Share this article

https://doi.org/10.7554/eLife.43302

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.