1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ

  1. Jinsai Shang
  2. Richard Brust
  3. Sarah A Mosure
  4. Jared Bass
  5. Paola Munoz-Tello
  6. Hua Lin
  7. Travis S Hughes
  8. Miru Tang
  9. Qingfeng Ge
  10. Theodore M Kamekencka
  11. Douglas J Kojetin  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of Montana, United States
  3. Southern Illinois University, United States
Research Article
  • Cited 17
  • Views 2,422
  • Annotations
Cite this article as: eLife 2018;7:e43320 doi: 10.7554/eLife.43320

Abstract

Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω) loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.

Data availability

Crystal structures and diffraction data have been deposited in the PDB under accession codes 5UGM, 6AVI, 6AUG, 6MCZ, 6MD0, 6MD1, 6MD2, and 6MD4.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jinsai Shang

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8164-1544
  2. Richard Brust

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9200-1101
  3. Sarah A Mosure

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jared Bass

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Paola Munoz-Tello

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hua Lin

    Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Travis S Hughes

    Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5764-5884
  8. Miru Tang

    Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Qingfeng Ge

    Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Theodore M Kamekencka

    Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Douglas J Kojetin

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    For correspondence
    dkojetin@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8058-6168

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK101871)

  • Douglas J Kojetin

American Heart Association (16- POST27780018)

  • Richard Brust

National Science Foundation (1659594)

  • Sarah A Mosure

The Scripps Research Institute

  • Sarah A Mosure

National Institute of Diabetes and Digestive and Kidney Diseases (R00DK103116)

  • Travis S Hughes

National Institute of Diabetes and Digestive and Kidney Diseases (F32DK108442)

  • Richard Brust

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Publication history

  1. Received: November 3, 2018
  2. Accepted: December 18, 2018
  3. Accepted Manuscript published: December 21, 2018 (version 1)
  4. Version of Record published: January 3, 2019 (version 2)

Copyright

© 2018, Shang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,422
    Page views
  • 459
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Immunology and Inflammation
    Gerald Willimsky et al.
    Research Article

    Proteasome catalyzed peptide splicing (PCPS) of cancer-driving antigens could generate attractive neoepitopes to be targeted by TCR-based adoptive T cell therapy. Based on a spliced peptide prediction algorithm TCRs were generated against putative KRASG12V and RAC2P29L derived neo-splicetopes with high HLA-A*02:01 binding affinity. TCRs generated in mice with a diverse human TCR repertoire specifically recognized the respective target peptides with high efficacy. However, we failed to detect any neo-splicetope specific T cell response when testing the in vivo neo-splicetope generation and obtained no experimental evidence that the putative KRASG12V- and RAC2P29L-derived neo-splicetopes were naturally processed and presented. Furthermore, only the putative RAC2P29L-derived neo-splicetopes was generated by in vitro PCPS. The experiments pose severe questions on the notion that available algorithms or the in vitro PCPS reaction reliably simulate in vivo splicing and argue against the general applicability of an algorithm-driven 'reverse immunology' pipeline for the identification of cancer-specific neo-splicetopes.

    1. Biochemistry and Chemical Biology
    Qiang Liu et al.
    Research Article

    The multimodal sensory channel transient receptor potential vanilloid-3 (TRPV3) is expressed in epidermal keratinocytes and implicated in chronic pruritus, allergy, and inflammation-related skin disorders. Gain-of-function mutations of TRPV3 cause hair growth disorders in mice and Olmsted Syndrome in human. We here report that mouse and human TRPV3 channel is targeted by the clinical medication dyclonine that exerts a potent inhibitory effect. Accordingly, dyclonine rescued cell death caused by gain-of-function TRPV3 mutations and suppressed pruritus symptoms in vivo in mouse model. At the single-channel level, dyclonine inhibited TRPV3 open probability but not the unitary conductance. By molecular simulations and mutagenesis, we further uncovered key residues in TRPV3 pore region that could toggle the inhibitory efficiency of dyclonine. The functional and mechanistic insights obtained on dyclonine-TRPV3 interaction will help to conceive updated therapeutics for skin inflammation.