Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ

  1. Jinsai Shang
  2. Richard Brust
  3. Sarah A Mosure
  4. Jared Bass
  5. Paola Munoz-Tello
  6. Hua Lin
  7. Travis S Hughes
  8. Miru Tang
  9. Qingfeng Ge
  10. Theodore M Kamekencka
  11. Douglas J Kojetin  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of Montana, United States
  3. Southern Illinois University, United States

Abstract

Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω) loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.

Data availability

Crystal structures and diffraction data have been deposited in the PDB under accession codes 5UGM, 6AVI, 6AUG, 6MCZ, 6MD0, 6MD1, 6MD2, and 6MD4.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jinsai Shang

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8164-1544
  2. Richard Brust

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9200-1101
  3. Sarah A Mosure

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jared Bass

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Paola Munoz-Tello

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hua Lin

    Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Travis S Hughes

    Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5764-5884
  8. Miru Tang

    Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Qingfeng Ge

    Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Theodore M Kamekencka

    Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Douglas J Kojetin

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
    For correspondence
    dkojetin@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8058-6168

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK101871)

  • Douglas J Kojetin

American Heart Association (16- POST27780018)

  • Richard Brust

National Science Foundation (1659594)

  • Sarah A Mosure

The Scripps Research Institute

  • Sarah A Mosure

National Institute of Diabetes and Digestive and Kidney Diseases (R00DK103116)

  • Travis S Hughes

National Institute of Diabetes and Digestive and Kidney Diseases (F32DK108442)

  • Richard Brust

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Shang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,980
    views
  • 667
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jinsai Shang
  2. Richard Brust
  3. Sarah A Mosure
  4. Jared Bass
  5. Paola Munoz-Tello
  6. Hua Lin
  7. Travis S Hughes
  8. Miru Tang
  9. Qingfeng Ge
  10. Theodore M Kamekencka
  11. Douglas J Kojetin
(2018)
Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ
eLife 7:e43320.
https://doi.org/10.7554/eLife.43320

Share this article

https://doi.org/10.7554/eLife.43320

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.