Working Memory: Separating the present and the future

The brain stores information that is needed immediately and information that will be needed in the future in different ways.
  1. Qing Yu  Is a corresponding author
  2. Bradley R Postle  Is a corresponding author
  1. University of Wisconsin-Madison, United States

Imagine you are in a grocery store without a shopping list. Even though you need to purchase multiple items, you still need to select them one by one. How does the brain distinguish between the most relevant information from everything else on our mind? In particular, is information about the item you intend to buy first stored in your 'working memory' in the same way as information about the other items?

A common method used to study memory processing in the human brain is functional magnetic resonance imaging (fMRI). Moreover, researchers often use machine learning techniques, such as multivariate pattern analysis, to decode information from the fMRI data. Typically, if multivariate pattern analysis is able to discriminate between different pieces of information based on their activity patterns in the brain, this is interpreted as evidence for an 'active' representation of the information. Alternatively, a failure to decode might suggest there is no active representation of it.

It is generally acknowledged that information that is immediately relevant is actively represented in working memory, but it remains unclear if this is also true for information that will be needed in the future (that is, for prospectively relevant information: see, for example, LaRocque et al., 2013; Lewis-Peacock et al., 2012). One possibility is that the latter is stored in an ‘activity-silent’ manner, due to a transient change in the strength of the synaptic connections between neurons (see, for example, Barak and Tsodyks, 2014). Such information can usually not be detected by traditional fMRI measurements, unless the network is stimulated to reactivate the ‘activity-silent’ information (Rose et al., 2016; Wolff et al., 2017). Alternatively, prospectively relevant information may be transferred to brain regions that are different from those where immediately relevant information is held (see, for example, Christophel et al., 2018).

Now, in eLife, Christian Olivers and colleagues of the Vrije Universiteit Amsterdam and the University of Amsterdam – Anouk van Loon, Katya Olmos Solis and Johannes Fahrenfort – report evidence for a third possibility, namely that prospectively relevant information is represented actively, but in a recoded format (van Loon et al., 2018).

To explore how working memory distinguishes between immediately relevant and prospectively relevant information, volunteers were asked to perform two visual search tasks. In the first experiment, they consecutively viewed a flower and another object (either a cow, a dresser or a skate), and the order was manipulated between trials. A cue during the initial presentation indicated which image would be relevant for the first (imminent) or the second (prospective) search. Then, depending on the trial (current vs. prospective), they had to first search for the target flower in an array of flowers and then search for the other target (e.g., a cow in an array of different cows), or vice versa. During the tasks, the researchers used fMRI to measure a region of the brain involved in categorizing objects, called the posterior fusiform cortex.

The researchers found that before the volunteers knew which of the two images would be the first search target, both were actively represented in a similar way in working memory. However, once one of the images was designated as immediately relevant, the representations diverged. Although both were still actively represented, the patterns of the two stimuli were the inverse of each other, as indicated by multivariate pattern analysis and another technique called representational dissimilarity analysis.

Moreover, after the first search, when the prospectively relevant information became immediately relevant, its representation in the brain 'flipped' back to its original pattern. In a second experiment, the researchers found that this reversed pattern only happened if the information was prospectively relevant; if the volunteer was told that the information was no longer relevant, it was lost from working memory.

As van Loon et al. acknowledge, other research groups have made similar discoveries using different kinds of tasks and different kinds of stimuli. Together all these results have important implications for our understanding of the representation of information in working memory. Therefore, a key goal for future research will be to clarify the circumstances under which prospectively relevant information is re-represented – relative to immediately relevant information – in a different pattern, in a different region of the brain, or a different state.

References

Article and author information

Author details

  1. Qing Yu

    Qing Yu is in the Department of Psychiatry, University of Wisconsin-Madison, Madison, United States

    For correspondence
    qyu55@wisc.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8480-7634
  2. Bradley R Postle

    Bradley R Postle is in the Department of Psychology and the Department of Psychiatry, University of Wisconsin-Madison, Madison, United States

    For correspondence
    postle@wisc.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8555-0148

Publication history

  1. Version of Record published: December 4, 2018 (version 1)

Copyright

© 2018, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,545
    Page views
  • 200
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qing Yu
  2. Bradley R Postle
(2018)
Working Memory: Separating the present and the future
eLife 7:e43339.
https://doi.org/10.7554/eLife.43339
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article Updated

    Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2–3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.

    1. Neuroscience
    Maria Cecilia Martinez, Camila Lidia Zold ... Mariano Andrés Belluscio
    Research Article

    The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.