Regulation of subcellular dendritic synapse specificity by axon guidance cues

  1. Emily C Sales
  2. Emily L Heckman
  3. Timothy L Warren
  4. Chris Q Doe  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Oregon, United States

Abstract

Neural circuit assembly occurs with subcellular precision, yet the mechanisms underlying this precision remain largely unknown. Subcellular synaptic specificity could be achieved by molecularly distinct subcellular domains that locally regulate synapse formation, or by axon guidance cues restricting access to one of several acceptable targets. We address these models using two Drosophila neurons: the dbd sensory neuron and the A08a interneuron. In wild-type larvae, dbd synapses with the A08a medial dendrite but not the A08a lateral dendrite. dbd-specific overexpression of the guidance receptors Unc-5 or Robo-2 results in lateralization of the dbd axon, which forms anatomical and functional monosynaptic connections with the A08a lateral dendrite. We conclude that axon guidance cues, not molecularly distinct dendritic arbors, are a major determinant of dbd-A08a subcellular synapse specificity.

Data availability

Code is deposited to the GitHub repository named in the text

The following data sets were generated

Article and author information

Author details

  1. Emily C Sales

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emily L Heckman

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timothy L Warren

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4429-4106
  4. Chris Q Doe

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    For correspondence
    cdoe@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5980-8029

Funding

Howard Hughes Medical Institute

  • Chris Q Doe

National Institutes of Health (HD27056)

  • Chris Q Doe

National Institutes of Health (T32HD007348)

  • Emily L Heckman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Sales et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,801
    views
  • 406
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily C Sales
  2. Emily L Heckman
  3. Timothy L Warren
  4. Chris Q Doe
(2019)
Regulation of subcellular dendritic synapse specificity by axon guidance cues
eLife 8:e43478.
https://doi.org/10.7554/eLife.43478

Share this article

https://doi.org/10.7554/eLife.43478

Further reading

    1. Developmental Biology
    Margaret Hines, Elias Oxman ... Irene Zohn
    Insight

    A new single-cell atlas of gene expression provides insights into the patterning of the neural plate of mice.

    1. Developmental Biology
    Natsuko Emura, Florence DM Wavreil ... Mamiko Yajima
    Research Article

    The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.