The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type

  1. Mohammed Kaplan
  2. Debnath Ghosal
  3. Poorna Subramanian
  4. Catherine M Oikonomou
  5. Andreas Kjaer
  6. Sahand Pirbadian
  7. Davi R Ortega
  8. Ariane Briegel
  9. Mohamed Y El-Naggar
  10. Grant J Jensen  Is a corresponding author
  1. California Institute of Technology, United States
  2. University of Southern California, United States

Abstract

The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown. Here we use electron cryo-tomography to determine the in situ macromolecular structures of three Gammaproteobacteria motors: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the motor's stator system and its structural elaboration. Motors with a single H+-driven stator have only the core periplasmic P- and L-rings; those with dual H+-driven stators have an elaborated P-ring; and motors with Na+ or Na+/H+-driven stators have both their P- and L-rings embellished. Our results suggest an evolution of structural elaboration that may have enabled pathogenic bacteria to colonize higher-viscosity environments in animal hosts.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.The ECT structures have been deposited in the EMDB under the following accession numbers, EMD-0464 for Legionella pneumophila motor, EMD-0465 for Pseudomonas aeruginosa motor and EMD-0467 for Shewanella oneidensis MR-1 motor

The following data sets were generated

Article and author information

Author details

  1. Mohammed Kaplan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Debnath Ghosal

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Poorna Subramanian

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine M Oikonomou

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andreas Kjaer

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0096-5764
  6. Sahand Pirbadian

    Department of Physics, Biological Sciences and Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Davi R Ortega

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ariane Briegel

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3733-3725
  9. Mohamed Y El-Naggar

    Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Grant J Jensen

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    jensen@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-4864

Funding

National Institutes of Health (R01 AI127401)

  • Mohammed Kaplan
  • Debnath Ghosal
  • Poorna Subramanian
  • Catherine M Oikonomou
  • Andreas Kjaer
  • Davi R Ortega
  • Ariane Briegel
  • Grant J Jensen

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Rubicon fellowship)

  • Mohammed Kaplan

Air Force Office of Scientific Research

  • Sahand Pirbadian

Air Force Office of Scientific Research (FA955014-1-0294)

  • Mohamed Y El-Naggar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: November 8, 2018
  2. Accepted: December 19, 2018
  3. Accepted Manuscript published: January 16, 2019 (version 1)
  4. Version of Record published: February 14, 2019 (version 2)

Copyright

© 2019, Kaplan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,729
    views
  • 377
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammed Kaplan
  2. Debnath Ghosal
  3. Poorna Subramanian
  4. Catherine M Oikonomou
  5. Andreas Kjaer
  6. Sahand Pirbadian
  7. Davi R Ortega
  8. Ariane Briegel
  9. Mohamed Y El-Naggar
  10. Grant J Jensen
(2019)
The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type
eLife 8:e43487.
https://doi.org/10.7554/eLife.43487

Share this article

https://doi.org/10.7554/eLife.43487

Further reading

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.