The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type
Abstract
The bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown. Here we use electron cryo-tomography to determine the in situ macromolecular structures of three Gammaproteobacteria motors: Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis, providing the first views of intact motors with dual stator systems. Complementing our imaging with bioinformatics analysis, we find a correlation between the motor's stator system and its structural elaboration. Motors with a single H+-driven stator have only the core periplasmic P- and L-rings; those with dual H+-driven stators have an elaborated P-ring; and motors with Na+ or Na+/H+-driven stators have both their P- and L-rings embellished. Our results suggest an evolution of structural elaboration that may have enabled pathogenic bacteria to colonize higher-viscosity environments in animal hosts.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.The ECT structures have been deposited in the EMDB under the following accession numbers, EMD-0464 for Legionella pneumophila motor, EMD-0465 for Pseudomonas aeruginosa motor and EMD-0467 for Shewanella oneidensis MR-1 motor
-
Shewanella oneidensis MR-1 motorEM Data Bank, EMD-0467.
Article and author information
Author details
Funding
National Institutes of Health (R01 AI127401)
- Mohammed Kaplan
- Debnath Ghosal
- Poorna Subramanian
- Catherine M Oikonomou
- Andreas Kjaer
- Davi R Ortega
- Ariane Briegel
- Grant J Jensen
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Rubicon fellowship)
- Mohammed Kaplan
Air Force Office of Scientific Research
- Sahand Pirbadian
Air Force Office of Scientific Research (FA955014-1-0294)
- Mohamed Y El-Naggar
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Edward H Egelman, University of Virginia, United States
Publication history
- Received: November 8, 2018
- Accepted: December 19, 2018
- Accepted Manuscript published: January 16, 2019 (version 1)
- Version of Record published: February 14, 2019 (version 2)
Copyright
© 2019, Kaplan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,467
- Page views
-
- 337
- Downloads
-
- 22
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Evolutionary Biology
Many animals rely on complex signals that target multiple senses to attract mates and repel rivals. These multimodal displays can however also attract unintended receivers, which can be an important driver of signal complexity. Despite being taxonomically widespread, we often lack insight into how multimodal signals evolve from unimodal signals and in particular what roles unintended eavesdroppers play. Here, we assess whether the physical movements of parasite defense behavior increase the complexity and attractiveness of an acoustic sexual signal in the little torrent frog (Amolops torrentis). Calling males of this species often display limb movements in order to defend against blood-sucking parasites such as frog-biting midges that eavesdrop on their acoustic signal. Through mate choice tests we show that some of these midge-evoked movements influence female preference for acoustic signals. Our data suggest that midge-induced movements may be incorporated into a sexual display, targeting both hearing and vision in the intended receiver. Females may play an important role in incorporating these multiple components because they prefer signals which combine multiple modalities. Our results thus help to understand the relationship between natural and sexual selection pressure operating on signalers and how in turn this may influence multimodal signal evolution.
-
- Computational and Systems Biology
- Evolutionary Biology
Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design – instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.