Abstract

A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. Multipartite viruses have a segmented genome where each segment is encapsidated separately. In this situation the viral genome is not recapitulated in a single virus particle but in the viral population. How multipartite viruses manage to efficiently infect individual cells with all segments, thus with the whole genome information, is a long-standing but perhaps deceptive mystery. By localizing and quantifying the genome segments of a nanovirus in host plant tissues we show that they rarely co-occur within individual cells. We further demonstrate that distinct segments accumulate independently in different cells and that the viral system is functional through complementation across cells. Our observation deviates from the classical conceptual framework in virology and opens an alternative possibility (at least for nanoviruses) where the infection can operate at a level above the individual cell level, defining a viral multicellular way of life.

Data availability

All data are available in the manuscript and in Supplemental Information.Raw data of all quantified green and red fluorescence within individual cells of infected plants are provided as a separate EXCEL supplementary file: Table S4.To allow repeat/reproduce all correlation tests, the 508 raw/unprocessed images (.lsm format) used for preparing all figures and for fluorescence quantification in individual cells have been deposited in the public repository figshare. They can be accessed at the DOI: 10.6084/m9.figshare.5981968

The following data sets were generated

Article and author information

Author details

  1. Anne Sicard

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Elodie Pirolles

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Romain Gallet

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Stéphanie Vernerey

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Michel Yvon

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Cica Urbino

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Michel Peterschmitt

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Serafin Gutierrez

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Yannis Michalakis

    MIVEGEC (CNRS/IRD/UM), Centre National de la Recherche Scientifique, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1929-0848
  10. Stéphane Blanc

    UMR BGPI, INRA, Centre Occitanie Montpellier, Montpellier, France
    For correspondence
    stephane.blanc@inra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3412-0989

Funding

Institut National de la Recherche Agronomique

  • Anne Sicard
  • Elodie Pirolles
  • Romain Gallet
  • Marie-Stéphanie Vernerey
  • Michel Yvon
  • Serafin Gutierrez
  • Stéphane Blanc

Centre National de la Recherche Scientifique

  • Elodie Pirolles
  • Yannis Michalakis

Institut de Recherche pour le developpement

  • Yannis Michalakis

Agence Nationale de la Recherche (ANR-14-CE02-0014)

  • Anne Sicard
  • Elodie Pirolles
  • Romain Gallet
  • Marie-Stéphanie Vernerey
  • Michel Yvon
  • Yannis Michalakis
  • Stéphane Blanc

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Sicard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 19,182
    views
  • 1,562
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne Sicard
  2. Elodie Pirolles
  3. Romain Gallet
  4. Marie-Stéphanie Vernerey
  5. Michel Yvon
  6. Cica Urbino
  7. Michel Peterschmitt
  8. Serafin Gutierrez
  9. Yannis Michalakis
  10. Stéphane Blanc
(2019)
A multicellular way of life for a multipartite virus
eLife 8:e43599.
https://doi.org/10.7554/eLife.43599

Share this article

https://doi.org/10.7554/eLife.43599

Further reading

    1. Microbiology and Infectious Disease
    Zeng-Hang Wang, Ying An ... Tao Dong
    Research Article

    Peptidoglycan (PG) serves as an essential target for antimicrobial development. An overlooked reservoir of antimicrobials lies in the form of PG-hydrolyzing enzymes naturally produced for polymicrobial competition, particularly those associated with the type VI secretion system (T6SS). Here, we report that a T6SS effector TseP, from Aeromonas dhakensis, represents a family of effectors with dual amidase-lysozyme activities. In vitro PG-digestion coupled with LC-MS analysis revealed the N-domain’s amidase activity, which is neutralized by either catalytic mutations or the presence of the immunity protein TsiP. The N-domain, but not the C-domain, of TseP is sufficient to restore T6SS secretion in T6SS-defective mutants, underscoring its critical structural role. Using pull-down and secretion assays, we showed that these two domains interact directly with a carrier protein VgrG2 and can be secreted separately. Homologs in Aeromonas hydrophila and Pseudomonas syringae exhibited analogous dual functions. Additionally, N- and C-domains display distinctive GC contents, suggesting an evolutionary fusion event. By altering the surface charge through structural-guided design, we engineered the TsePC4+ effector that successfully lyses otherwise resistant Bacillus subtilis cells, enabling the T6SS to inhibit B. subtilis in a contact-independent manner. This research uncovers TseP as a new family of bifunctional chimeric effectors targeting PG, offering a potential strategy to harness these proteins in the fight against antimicrobial resistance.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Flavia A Zanetti, Ignacio Fernandez ... Laura Ruth Delgui
    Research Article

    Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.