1. Chromosomes and Gene Expression
  2. Genetics and Genomics
Download icon

Requirements for RNA polymerase II preinitiation complex formation in vivo

  1. Natalia Petrenko
  2. Yi Jin
  3. Liguo Dong
  4. Koon Ho Wong  Is a corresponding author
  5. Kevin Struhl  Is a corresponding author
  1. Harvard Medical School, United States
  2. University of Macau, Macau
Research Article
  • Cited 16
  • Views 4,536
  • Annotations
Cite this article as: eLife 2019;8:e43654 doi: 10.7554/eLife.43654

Abstract

Transcription by RNA polymerase II requires assembly of a preinitiation complex (PIC) composed of general transcription factors (GTFs) bound at the promoter. In vitro, some GTFs are essential for transcription, whereas others are not required under certain conditions. PICs are stable in the absence of nucleotide triphosphates, and subsets of GTFs can form partial PICs. By depleting individual GTFs in yeast cells, we show that all GTFs are essential for TBP binding and transcription, suggesting that partial PICs do not exist at appreciable levels in vivo. Depletion of FACT, a histone chaperone that travels with elongating Pol II, strongly reduces PIC formation and transcription. In contrast, TBP-associated factors (TAFs) contribute to transcription of most genes, but TAF-independent transcription occurs at substantial levels, preferentially at promoters containing TATA elements. PICs are absent in cells deprived of uracil, and presumably UTP, suggesting that transcriptionally inactive PICs are removed from promoters in vivo.

Data availability

Sequencing data has been deposited in GEO under the accession number GSE122734

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Natalia Petrenko

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Yi Jin

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Liguo Dong

    Faculty of Health Sciences, University of Macau, Macau, Macau
    Competing interests
    No competing interests declared.
  4. Koon Ho Wong

    Faculty of Health Sciences, University of Macau, Macau, Macau
    For correspondence
    KoonHoWong@umac.mo
    Competing interests
    No competing interests declared.
  5. Kevin Struhl

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    kevin@hms.harvard.edu
    Competing interests
    Kevin Struhl, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4181-7856

Funding

National Institutes of Health (GM 30186)

  • Natalia Petrenko
  • Yi Jin
  • Koon Ho Wong
  • Kevin Struhl

Universidade de Macau (MYRG2015-00186 FHS)

  • Liguo Dong
  • Koon Ho Wong

Croucher Foundation

  • Koon Ho Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Green, Howard Hughes Medical Institute, University of Massachusetts Medical School, United States

Publication history

  1. Received: November 14, 2018
  2. Accepted: January 25, 2019
  3. Accepted Manuscript published: January 25, 2019 (version 1)
  4. Version of Record published: February 7, 2019 (version 2)

Copyright

© 2019, Petrenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,536
    Page views
  • 559
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Lizhi He et al.
    Research Article Updated

    The YAP and TAZ paralogs are transcriptional co-activators recruited to target sites by TEAD proteins. Here, we show that YAP and TAZ are also recruited by JUNB (a member of the AP-1 family) and STAT3, key transcription factors that mediate an epigenetic switch linking inflammation to cellular transformation. YAP and TAZ directly interact with JUNB and STAT3 via a WW domain important for transformation, and they stimulate transcriptional activation by AP-1 proteins. JUNB, STAT3, and TEAD co-localize at virtually all YAP/TAZ target sites, yet many target sites only contain individual AP-1, TEAD, or STAT3 motifs. This observation and differences in relative crosslinking efficiencies of JUNB, TEAD, and STAT3 at YAP/TAZ target sites suggest that YAP/TAZ is recruited by different forms of an AP-1/STAT3/TEAD complex depending on the recruiting motif. The different classes of YAP/TAZ target sites are associated with largely non-overlapping genes with distinct functions. A small minority of target sites are YAP- or TAZ-specific, and they are associated with different sequence motifs and gene classes from shared YAP/TAZ target sites. Genes containing either the AP-1 or TEAD class of YAP/TAZ sites are associated with poor survival of breast cancer patients with the triple-negative form of the disease.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Luka Bacic et al.
    Research Article Updated

    The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.