Hierarchical stem cell topography splits growth and homeostatic functions in the fish gill

  1. Julian Stolper
  2. Elizabeth Mayela Ambrosio
  3. Diana-Patricia Danciu
  4. Lorena Bono
  5. David A Elliott
  6. Kiyoshi Naruse
  7. Juan R Martínez-Morales
  8. Anna Marciniak-Czochra
  9. Lazaro Centanin  Is a corresponding author
  1. Centre for Organismal Studies, Heidelberg University, Germany
  2. Heidelberg University, Germany
  3. Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Spain
  4. Murdoch Children's Research Institute, Royal Children's Hospital, Australia
  5. National Institute for Basic Biology, National Institutes of Natural Sciences, Japan

Abstract

While lower vertebrates contain adult stem cells (aSCs) that maintain homeostasis and drive un-exhaustive organismal growth, mammalian aSCs display mainly the homeostatic function. Here we use lineage analysis in the fish gill to address aSCs and report separate stem cell populations for homeostasis and growth. These aSCs are fate-restricted during the entire post-embryonic life and even during re-generation paradigms. We use chimeric animals to demonstrate that p53 mediates growth coordination among fate-restricted aSCs, suggesting a hierarchical organisation among lineages in composite organs like the fish gill. Homeostatic and growth aSCs are clonal but differ in their topology; modifications in tissue architecture can convert the homeostatic zone into a growth zone, indicating a leading role for the physical niche defining stem cell output. We hypothesise that physical niches are main players to restrict aSCs to a homeostatic function in animals with fixed adult size.

Data availability

All data analysed for this study is included in the manuscript and supporting files. Raw sequencing data have been deposited in GEO under accession code GSE130939

The following data sets were generated

Article and author information

Author details

  1. Julian Stolper

    Animal Physiology and Development, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Mayela Ambrosio

    Animal Physiology and Development, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7227-7744
  3. Diana-Patricia Danciu

    Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8683-3956
  4. Lorena Bono

    Gene Regulation and Morphogenesis, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. David A Elliott

    Cell Biology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1052-7407
  6. Kiyoshi Naruse

    Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Juan R Martínez-Morales

    Gene Regulation and Morphogenesis, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4650-4293
  8. Anna Marciniak-Czochra

    Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5831-6505
  9. Lazaro Centanin

    Animal Physiology and Development, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    For correspondence
    lazaro.centanin@cos.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3889-4524

Funding

Deutsche Forschungsgemeinschaft (SFB873/A11)

  • Lazaro Centanin

Deutsche Forschungsgemeinschaft (SFB873/B08)

  • Anna Marciniak-Czochra

University of Melbourne (Melbourne Research Fellowship / Graduate Student Fellowship)

  • Julian Stopler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alejandro Sánchez Alvarado, Stowers Institute for Medical Research, United States

Ethics

Animal experimentation: Experimental procedures with fish were performed in accordance with the German animal welfare law and approved by the local government (Tierschutzgesetz {section sign}11, Abs. 1, Nr. 1, husbandry permit number AZ 35-9185.64/BH; line generation permit number AZ 35-9185.81/G-145-15), and with the approval from the Institutional Animal Care and Use Committees of the National Institute for Basic Biology, Japan.

Version history

  1. Received: November 19, 2018
  2. Accepted: May 14, 2019
  3. Accepted Manuscript published: May 15, 2019 (version 1)
  4. Accepted Manuscript updated: May 16, 2019 (version 2)
  5. Version of Record published: May 24, 2019 (version 3)

Copyright

© 2019, Stolper et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,788
    Page views
  • 246
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julian Stolper
  2. Elizabeth Mayela Ambrosio
  3. Diana-Patricia Danciu
  4. Lorena Bono
  5. David A Elliott
  6. Kiyoshi Naruse
  7. Juan R Martínez-Morales
  8. Anna Marciniak-Czochra
  9. Lazaro Centanin
(2019)
Hierarchical stem cell topography splits growth and homeostatic functions in the fish gill
eLife 8:e43747.
https://doi.org/10.7554/eLife.43747

Share this article

https://doi.org/10.7554/eLife.43747

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.