A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control

  1. Wei Tang
  2. Saad Jbabdi
  3. Ziyi Zhu
  4. Michiel Cottaar
  5. Giorgia Grisot
  6. Julia F Lehman
  7. Anastasia Yendiki
  8. Suzanne N Haber  Is a corresponding author
  1. McLean Hospital / Harvard Medical School, United States
  2. University of Oxford, United Kingdom
  3. University of Rochester School of Medicine, United States
  4. Massachusetts General Hospital, United States

Abstract

We investigated afferent inputs from all areas in the frontal cortex (FC) to different subregions in the rostral anterior cingulate cortex (rACC). Using retrograde tracing in macaque monkeys, we quantified projection strength by counting retrogradely labeled cells in each FC area. The projection from different FC regions varied across injection sites in strength, following different spatial patterns. Importantly, a site at the rostral end of the cingulate sulcus stood out as having strong inputs from many areas in diverse FC regions. Moreover, it was at the integrative conjunction of three projection trends across sites. This site marks a connectional hub inside the rACC that integrates FC inputs across functional modalities. Tractography with monkey diffusion magnetic resonance imaging (dMRI) located a similar hub region comparable to the tracing result. Applying the same tractography method to human dMRI data, we demonstrated that a similar hub can be located in the human rACC.

Data availability

All data analysed during this study are included in the manuscript and supporting files. FreeSurfer label files have been provided for Figure 8A.

The following previously published data sets were used

Article and author information

Author details

  1. Wei Tang

    Basic Neuroscience Division, McLean Hospital / Harvard Medical School, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Saad Jbabdi

    Centre for Functional MRI of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ziyi Zhu

    Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michiel Cottaar

    Centre for Functional MRI of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Giorgia Grisot

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4349-1201
  6. Julia F Lehman

    Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anastasia Yendiki

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Suzanne N Haber

    Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, United States
    For correspondence
    Suzanne_Haber@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5237-1941

Funding

National Institute of Mental Health (MH106435)

  • Wei Tang
  • Ziyi Zhu
  • Julia F Lehman
  • Suzanne N Haber

National Institute of Mental Health (MH045573)

  • Wei Tang
  • Ziyi Zhu
  • Julia F Lehman
  • Suzanne N Haber

Medical Research Council (MR/L009013/1)

  • Saad Jbabdi

National Institute of Mental Health (U01-MH109589)

  • Michiel Cottaar

NIH Blueprint for Neuroscience Research (U01-MH093765)

  • Giorgia Grisot
  • Anastasia Yendiki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Badre, Brown University, United States

Ethics

Animal experimentation: All nonhuman primate experiments were performed in accordance with the Institute of Laboratory Animal Resources Guide for the Care and Use of Laboratory Animals and approved by the University Committee on Animal Resources at University of Rochester (Protocol Number UCAR-2008-122R).

Human subjects: The human data were obtained from the publicly available Human Connectome Project database. All procedures conformed to ethical standards approved by the Institutional Review Board of Partners Healthcare. All human subjects have provided written informed consent.

Version history

  1. Received: November 19, 2018
  2. Accepted: June 18, 2019
  3. Accepted Manuscript published: June 19, 2019 (version 1)
  4. Version of Record published: July 11, 2019 (version 2)

Copyright

© 2019, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,482
    views
  • 594
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Tang
  2. Saad Jbabdi
  3. Ziyi Zhu
  4. Michiel Cottaar
  5. Giorgia Grisot
  6. Julia F Lehman
  7. Anastasia Yendiki
  8. Suzanne N Haber
(2019)
A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control
eLife 8:e43761.
https://doi.org/10.7554/eLife.43761

Share this article

https://doi.org/10.7554/eLife.43761

Further reading

    1. Neuroscience
    Shanka Subhra Mondal, Steven Frankland ... Jonathan D Cohen
    Research Article

    Deep neural networks have made tremendous gains in emulating human-like intelligence, and have been used increasingly as ways of understanding how the brain may solve the complex computational problems on which this relies. However, these still fall short of, and therefore fail to provide insight into how the brain supports strong forms of generalization of which humans are capable. One such case is out-of-distribution (OOD) generalization – successful performance on test examples that lie outside the distribution of the training set. Here, we identify properties of processing in the brain that may contribute to this ability. We describe a two-part algorithm that draws on specific features of neural computation to achieve OOD generalization, and provide a proof of concept by evaluating performance on two challenging cognitive tasks. First we draw on the fact that the mammalian brain represents metric spaces using grid cell code (e.g., in the entorhinal cortex): abstract representations of relational structure, organized in recurring motifs that cover the representational space. Second, we propose an attentional mechanism that operates over the grid cell code using determinantal point process (DPP), that we call DPP attention (DPP-A) – a transformation that ensures maximum sparseness in the coverage of that space. We show that a loss function that combines standard task-optimized error with DPP-A can exploit the recurring motifs in the grid cell code, and can be integrated with common architectures to achieve strong OOD generalization performance on analogy and arithmetic tasks. This provides both an interpretation of how the grid cell code in the mammalian brain may contribute to generalization performance, and at the same time a potential means for improving such capabilities in artificial neural networks.

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.