1. Evolutionary Biology
  2. Genetics and Genomics
Download icon

Predominance of cis-regulatory changes in parallel expression divergence of sticklebacks

  1. Jukka-Pekka Verta  Is a corresponding author
  2. Felicity C Jones  Is a corresponding author
  1. University of Helsinki, Finland
  2. Friedrich Miescher Laboratory of the Max Planck Society, Germany
Research Article
  • Cited 16
  • Views 2,560
  • Annotations
Cite this article as: eLife 2019;8:e43785 doi: 10.7554/eLife.43785

Abstract

Regulation of gene expression is thought to play a major role in adaptation but the relative importance of cis- and trans- regulatory mechanisms in the early stages of adaptive divergence is unclear. Using RNAseq of threespine stickleback fish gill tissue from four independent marine-freshwater ecotype pairs and their F1 hybrids, we show that cis-acting (allele-specific) regulation consistently predominates gene expression divergence. Genes showing parallel marine-freshwater expression divergence are found near to adaptive genomic regions, show signatures of natural selection around their transcription start sites and are enriched for cis-regulatory control. For genes with parallel increased expression among freshwater fish, the quantitative degree of cis- and trans-regulation is also highly correlated across populations, suggesting a shared genetic basis. Compared to other forms of regulation, cis-regulation tends to show greater additivity and stability across different genetic and environmental contexts, making it a fertile substrate for the early stages of adaptive evolution.

Data availability

Data has been deposited to the Sequence Read Archive under the accession PRJNA530695. All scripts used in data analysis are available at https://github.com/jpverta/verta_jones_elife_2019.git

The following data sets were generated

Article and author information

Author details

  1. Jukka-Pekka Verta

    Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
    For correspondence
    jukka-pekka.verta@helsinki.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1701-6124
  2. Felicity C Jones

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    For correspondence
    fcjones@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5027-1031

Funding

H2020 European Research Council (FP7)

  • Felicity C Jones

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were housed at an approved animal facility and handled according to Baden-Württemberg State approved protocols at the Max Planck Institute for Developmental Biology, Tübingen, Germany (license numbers 35/9185.82-5 and 35/9185.40).

Reviewing Editor

  1. Juliette de Meaux, University of Cologne, Germany

Publication history

  1. Received: November 27, 2018
  2. Accepted: May 1, 2019
  3. Accepted Manuscript published: May 15, 2019 (version 1)
  4. Version of Record published: June 5, 2019 (version 2)

Copyright

© 2019, Verta & Jones

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,560
    Page views
  • 390
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    Chenlu Di et al.
    Research Article Updated

    Advances in genome sequencing have improved our understanding of the genetic basis of human diseases, and thousands of human genes have been associated with different diseases. Recent genomic adaptation at disease genes has not been well characterized. Here, we compare the rate of strong recent adaptation in the form of selective sweeps between mendelian, non-infectious disease genes and non-disease genes across distinct human populations from the 1000 Genomes Project. We find that mendelian disease genes have experienced far less selective sweeps compared to non-disease genes especially in Africa. Investigating further the possible causes of the sweep deficit at disease genes, we find that this deficit is very strong at disease genes with both low recombination rates and with high numbers of associated disease variants, but is almost non-existent at disease genes with higher recombination rates or lower numbers of associated disease variants. Because segregating recessive deleterious variants have the ability to interfere with adaptive ones, these observations strongly suggest that adaptation has been slowed down by the presence of interfering recessive deleterious variants at disease genes. These results suggest that disease genes suffer from a transient inability to adapt as fast as the rest of the genome.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Jennifer E Jones et al.
    Research Article Updated

    The influenza A virus (IAV) genome consists of eight negative-sense viral RNA (vRNA) segments that are selectively assembled into progeny virus particles through RNA-RNA interactions. To explore putative intersegmental RNA-RNA relationships, we quantified similarity between phylogenetic trees comprising each vRNA segment from seasonal human IAV. Intersegmental tree similarity differed between subtype and lineage. While intersegmental relationships were largely conserved over time in H3N2 viruses, they diverged in H1N1 strains isolated before and after the 2009 pandemic. Surprisingly, intersegmental relationships were not driven solely by protein sequence, suggesting that IAV evolution could also be driven by RNA-RNA interactions. Finally, we used confocal microscopy to determine that colocalization of highly coevolved vRNA segments is enriched over other assembly intermediates at the nuclear periphery during productive viral infection. This study illustrates how putative RNA interactions underlying selective assembly of IAV can be interrogated with phylogenetics.