Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq

  1. Dylan Kotliar  Is a corresponding author
  2. Adrian Veres
  3. M Aurel Nagy
  4. Shervin Tabrizi
  5. Eran Hodis
  6. Douglas A Melton
  7. Pardis C Sabeti
  1. Harvard Medical School, United States
  2. Massachusetts Institute of Technology, United States
  3. Broad Institute of MIT and Harvard, United States
  4. Harvard University, United States

Abstract

Identifying gene expression programs underlying both cell-type identity and cellular activities (e.g. life-cycle processes, responses to environmental cues) is crucial for understanding the organization of cells and tissues. Although single-cell RNA-Seq (scRNA-Seq) can quantify transcripts in individual cells, each cell's expression profile may be a mixture of both types of programs, making them difficult to disentangle. Here we benchmark and enhance the use of matrix factorization to solve this problem. We show with simulations that a method we call consensus non-negative matrix factorization (cNMF) accurately infers identity and activity programs, including their relative contributions in each cell. To illustrate the insights this approach enables, we apply it to published brain organoid and visual cortex scRNA-Seq datasets; cNMF refines cell types and identifies both expected (e.g. cell cycle and hypoxia) and novel activity programs, including programs that may underlie a neurosecretory phenotype and synaptogenesis.

Data availability

All of the analyzed real datasets are publicly available and the relevant GEO accession codes are included in the manuscript. All of the simulated and real data can be accessed through Code Ocean at the following URL: https://doi.org/10.24433/CO.9044782e-cb96-4733-8a4f-bf42c21399e6

The following previously published data sets were used

Article and author information

Author details

  1. Dylan Kotliar

    Department of Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    dylan_kotliar@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7968-645X
  2. Adrian Veres

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. M Aurel Nagy

    Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shervin Tabrizi

    Viral Computational Genomics, Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eran Hodis

    Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Douglas A Melton

    Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1623-5504
  7. Pardis C Sabeti

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of General Medical Sciences (T32GM007753)

  • Dylan Kotliar
  • Adrian Veres
  • M Aurel Nagy
  • Eran Hodis

National Institute of Allergy and Infectious Diseases (R01AI099210)

  • Pardis C Sabeti

U.S. Food and Drug Administration (HHSF223201810172C)

  • Dylan Kotliar
  • Pardis C Sabeti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Kotliar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 45,134
    views
  • 3,915
    downloads
  • 371
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dylan Kotliar
  2. Adrian Veres
  3. M Aurel Nagy
  4. Shervin Tabrizi
  5. Eran Hodis
  6. Douglas A Melton
  7. Pardis C Sabeti
(2019)
Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq
eLife 8:e43803.
https://doi.org/10.7554/eLife.43803

Share this article

https://doi.org/10.7554/eLife.43803

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.