1. Evolutionary Biology
Download icon

Evolution of empathetic moral evaluation

  1. Arunas L Radzvilavicius  Is a corresponding author
  2. Alexander J Stewart
  3. Joshua B Plotkin  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of Houston, United States
Research Article
  • Cited 10
  • Views 3,768
  • Annotations
Cite this article as: eLife 2019;8:e44269 doi: 10.7554/eLife.44269

Abstract

Social norms can promote cooperation by assigning reputations to individuals based on their past actions. A good reputation indicates that an individual is likely to reciprocate. A large body of research has established norms of moral assessment that promote cooperation, assuming reputations are objective. But without a centralized institution to provide objective evaluation, opinions about an individual's reputation may differ across a population. In this setting we study the role of empathy-the capacity to form moral evaluations from another person's perspective. We show that empathy tends to foster cooperation by reducing the rate of unjustified defection. The norms of moral evaluation previously considered most socially beneficial depend on high levels of empathy, whereas different norms maximize social welfare in populations incapable of empathy. Finally, we show that empathy itself can evolve through social contagion. We conclude that a capacity for empathy is a key component for sustaining cooperation in societies.

Data availability

The data for all figures, code to produce the figures from these data, and the simulation code that generated the data are provided as Source data 1.

Article and author information

Author details

  1. Arunas L Radzvilavicius

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    arunas@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander J Stewart

    Department of Biology, University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua B Plotkin

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    jplotkin@sas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2349-6304

Funding

David and Lucile Packard Foundation

  • Joshua B Plotkin

U. S. Army Research Office (W911NF-12-R-0012-04)

  • Joshua B Plotkin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Doebeli, University of British Columbia, Canada

Publication history

  1. Received: December 10, 2018
  2. Accepted: March 19, 2019
  3. Accepted Manuscript published: April 9, 2019 (version 1)
  4. Version of Record published: April 29, 2019 (version 2)

Copyright

© 2019, Radzvilavicius et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,768
    Page views
  • 446
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Tom Dierschke et al.
    Research Article

    Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular Chlorophyte alga Chlamydomonas KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.

    1. Evolutionary Biology
    2. Physics of Living Systems
    Damián G Hernández et al.
    Research Article Updated

    Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.