Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells

  1. Christopher D Todd
  2. Özgen Deniz
  3. Darren Taylor
  4. Miguel R Branco  Is a corresponding author
  1. Queen Mary University of London, United Kingdom

Abstract

Transposable elements (TEs) are thought to have helped establish gene regulatory networks. Both the embryonic and extraembryonic lineages of the early mouse embryo have seemingly co-opted TEs as enhancers, but there is little evidence that they play significant roles in gene regulation. Here we tested a set of long terminal repeat TE families for roles as enhancers in mouse embryonic and trophoblast stem cells. Epigenomic and transcriptomic data suggested that a large number of TEs helped to establish tissue-specific gene expression programmes. Genetic editing of individual TEs confirmed a subset of these regulatory relationships. However, a wider survey via CRISPR interference of RLTR13D6 elements in embryonic stem cells revealed that only a minority play significant roles in gene regulation. Our results suggest that a subset of TEs are important for gene regulation in early mouse development, and highlight the importance of functional experiments when evaluating gene regulatory roles of TEs.

Data availability

Sequencing data have been deposited in GEO under accession code GSE122856.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Christopher D Todd

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Özgen Deniz

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Darren Taylor

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Miguel R Branco

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    For correspondence
    m.branco@qmul.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9447-1548

Funding

Wellcome (Sir Henry Dale Fellowship 101225/Z/13/Z)

  • Miguel R Branco

The Medical College of Saint Bartholomew's Hospital Trust (Donald Hunter Studentship)

  • Christopher D Todd

Biotechnology and Biological Sciences Research Council (BB/R505997/1)

  • Darren Taylor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deborah Bourc'his, Institut Curie, France

Version history

  1. Received: December 12, 2018
  2. Accepted: April 20, 2019
  3. Accepted Manuscript published: April 23, 2019 (version 1)
  4. Version of Record published: May 31, 2019 (version 2)
  5. Version of Record updated: February 28, 2020 (version 3)

Copyright

© 2019, Todd et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,070
    views
  • 1,246
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher D Todd
  2. Özgen Deniz
  3. Darren Taylor
  4. Miguel R Branco
(2019)
Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells
eLife 8:e44344.
https://doi.org/10.7554/eLife.44344

Share this article

https://doi.org/10.7554/eLife.44344

Further reading

    1. Chromosomes and Gene Expression
    Chaitra Shree Udugere Shivakumara Swamy, Thomas C Boothby
    Insight

    Tiny animals known as tardigrades use a combination of DNA repair machinery and a novel protein to mend their genome after intense ionizing radiation.

    1. Chromosomes and Gene Expression
    Miin S Lin, Se-Young Jo ... Vineet Bafna
    Research Article

    Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.