A terpene synthase-cytochrome P450 cluster in Dictyostelium discoideum produces a novel trisnorsesquiterpene

  1. Xinlu Chen
  2. Katrin Luck
  3. Patrick Rabe
  4. Christopher QD Dinh
  5. Gadi Shaulsky
  6. David R Nelson
  7. Jonathan Gershenzon
  8. Jeroen S Dickschat
  9. Tobias G Köllner
  10. Feng Chen  Is a corresponding author
  1. University of Tennessee, United States
  2. Max Planck Institute for Chemical Ecology, Germany
  3. University of Bonn, Germany
  4. Baylor College of Medicine, United States
  5. University of Tennessee Health Science Center, United States

Abstract

Terpenoids are enormously diverse, but our knowledge of their biosynthesis and functions is limited. Here we report on a terpene synthase (DdTPS8)-cytochrome P450 (CYP521A1) gene cluster that produces a novel C12 trisnorsesquiterpene and affects the development of Dictyostelium discoideum. DdTPS8 catalyzes the formation of a sesquiterpene discoidol, which is undetectable from the volatile bouquet of wild type D. discoideum. Interestingly, a DdTPS8 knockout mutant lacks not only discoidol, but also a putative trisnorsesquiterpene. This compound was hypothesized to be derived from discoidol via cytochrome P450 (CYP)-catalyzed oxidative cleavage. CYP521A1, which is clustered with DdTPS8, was identified as a top candidate. Biochemical assays demonstrated that CYP521A1 catalyzes the conversion of discoidol to a novel trisnorsesquiterpene named discodiene. The DdTPS8 knockout mutant exhibited slow progression in development. This study points to the untapped diversity of natural products made by D. discoideum, which may have diverse roles in its development and chemical ecology.

Data availability

The sequence for CYP521A1 has been deposited in the GenBank database (accession nos. MH923436).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xinlu Chen

    Department of Plant Sciences, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Katrin Luck

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick Rabe

    Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher QD Dinh

    Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gadi Shaulsky

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0532-0551
  6. David R Nelson

    Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0583-5421
  7. Jonathan Gershenzon

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeroen S Dickschat

    Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Tobias G Köllner

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Feng Chen

    Department of Plant Sciences, University of Tennessee, Knoxville, United States
    For correspondence
    fengc@utk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3267-4646

Funding

University of Tennessee Institute of Agriculture

  • Feng Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,850
    views
  • 364
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinlu Chen
  2. Katrin Luck
  3. Patrick Rabe
  4. Christopher QD Dinh
  5. Gadi Shaulsky
  6. David R Nelson
  7. Jonathan Gershenzon
  8. Jeroen S Dickschat
  9. Tobias G Köllner
  10. Feng Chen
(2019)
A terpene synthase-cytochrome P450 cluster in Dictyostelium discoideum produces a novel trisnorsesquiterpene
eLife 8:e44352.
https://doi.org/10.7554/eLife.44352

Share this article

https://doi.org/10.7554/eLife.44352

Further reading

    1. Biochemistry and Chemical Biology
    Swarang Sachin Pundlik, Alok Barik ... Arvind Ramanathan
    Short Report

    Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase–Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Duk-Su Koh, Anastasiia Stratiievska ... Sharona E Gordon
    Tools and Resources

    Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.