A terpene synthase-cytochrome P450 cluster in Dictyostelium discoideum produces a novel trisnorsesquiterpene
Abstract
Terpenoids are enormously diverse, but our knowledge of their biosynthesis and functions is limited. Here we report on a terpene synthase (DdTPS8)-cytochrome P450 (CYP521A1) gene cluster that produces a novel C12 trisnorsesquiterpene and affects the development of Dictyostelium discoideum. DdTPS8 catalyzes the formation of a sesquiterpene discoidol, which is undetectable from the volatile bouquet of wild type D. discoideum. Interestingly, a DdTPS8 knockout mutant lacks not only discoidol, but also a putative trisnorsesquiterpene. This compound was hypothesized to be derived from discoidol via cytochrome P450 (CYP)-catalyzed oxidative cleavage. CYP521A1, which is clustered with DdTPS8, was identified as a top candidate. Biochemical assays demonstrated that CYP521A1 catalyzes the conversion of discoidol to a novel trisnorsesquiterpene named discodiene. The DdTPS8 knockout mutant exhibited slow progression in development. This study points to the untapped diversity of natural products made by D. discoideum, which may have diverse roles in its development and chemical ecology.
Data availability
The sequence for CYP521A1 has been deposited in the GenBank database (accession nos. MH923436).
Article and author information
Author details
Funding
University of Tennessee Institute of Agriculture
- Feng Chen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Chen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,931
- views
-
- 382
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.