Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism

  1. Isabel ML Saur
  2. Saskia Bauer
  3. Barbara Kracher
  4. Xunli Lu
  5. Lamprinos Franzeskakis
  6. Marion C Müller
  7. Björn Sabelleck
  8. Florian Kümmel
  9. Ralph Panstruga
  10. Takaki Maekawa
  11. Paul Schulze-Lefert  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. China Agricultural University, China
  3. RWTH Aachen University, Germany
  4. University of Zurich, Switzerland

Abstract

Nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins in plants and animals mediate intracellular pathogen-sensing. Plant NLRs typically detect strain-specific pathogen effectors and trigger immune responses often linked to localized host cell death. The barley Mla disease resistance locus has undergone extensive functional diversification in the host population and encodes numerous allelic NLRs each detecting a matching isolate-specific avirulence effector (AVRA) of the fungal pathogen Blumeria graminis f. sp. hordei (Bgh). We report here the isolation of Bgh AVRa7, AVRa9, AVRa10, and AVRa22, which encode small secreted proteins recognized by allelic MLA7, MLA9, MLA10, and MLA22 receptors, respectively. These effectors are sequence-unrelated, except for allelic AVRa10 and AVRa22 that are co-maintained in pathogen populations in the form of a balanced polymorphism. Contrary to numerous examples of indirect recognition of bacterial effectors by plant NLRs, co-expression experiments with matching Mla-AVRa pairs indicate direct detection of the sequence-unrelated fungal effectors by MLA receptors.

Data availability

RNA sequencing data have been deposited in GEO under accession code GSE110266 and improved Blumeria graminis f.sp. hordei isolate K1 assembly is deposited under the accession number PRJEB30373 at EBI-ENA. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Isabel ML Saur

    Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Saskia Bauer

    Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4559-5063
  3. Barbara Kracher

    Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Xunli Lu

    Department of Plant Pathology, China Agricultural University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Lamprinos Franzeskakis

    Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marion C Müller

    Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5594-2319
  7. Björn Sabelleck

    Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Florian Kümmel

    Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Ralph Panstruga

    Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3756-8957
  10. Takaki Maekawa

    Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Schulze-Lefert

    Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
    For correspondence
    schlef@mpipz.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8978-1717

Funding

Deutsche Forschungsgemeinschaft (SFB670)

  • Barbara Kracher
  • Takaki Maekawa
  • Paul Schulze-Lefert

Max-Planck-Gesellschaft (Open-access funding)

  • Saskia Bauer
  • Paul Schulze-Lefert

European Molecular Biology Organization (ALTF 368-2016)

  • Isabel ML Saur

Cluster of Excellence in Plant Sciences (CEPLAS)

  • Paul Schulze-Lefert

Deutsche Forschungsgemeinschaft (SPP1819)

  • Lamprinos Franzeskakis
  • Ralph Panstruga

Daimler und Benz Stiftung

  • Isabel ML Saur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Saur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,896
    views
  • 1,017
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isabel ML Saur
  2. Saskia Bauer
  3. Barbara Kracher
  4. Xunli Lu
  5. Lamprinos Franzeskakis
  6. Marion C Müller
  7. Björn Sabelleck
  8. Florian Kümmel
  9. Ralph Panstruga
  10. Takaki Maekawa
  11. Paul Schulze-Lefert
(2019)
Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism
eLife 8:e44471.
https://doi.org/10.7554/eLife.44471

Share this article

https://doi.org/10.7554/eLife.44471

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Plant Biology
    Maryam Rahmati Ishka, Hayley Sussman ... Magdalena M Julkowska
    Research Article

    Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study’s innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.