Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism

  1. Isabel ML Saur
  2. Saskia Bauer
  3. Barbara Kracher
  4. Xunli Lu
  5. Lamprinos Franzeskakis
  6. Marion C Müller
  7. Björn Sabelleck
  8. Florian Kümmel
  9. Ralph Panstruga
  10. Takaki Maekawa
  11. Paul Schulze-Lefert  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. China Agricultural University, China
  3. RWTH Aachen University, Germany
  4. University of Zurich, Switzerland
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/44471/elife-44471-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isabel ML Saur
  2. Saskia Bauer
  3. Barbara Kracher
  4. Xunli Lu
  5. Lamprinos Franzeskakis
  6. Marion C Müller
  7. Björn Sabelleck
  8. Florian Kümmel
  9. Ralph Panstruga
  10. Takaki Maekawa
  11. Paul Schulze-Lefert
(2019)
Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism
eLife 8:e44471.
https://doi.org/10.7554/eLife.44471