1. Medicine
  2. Immunology and Inflammation
Download icon

HIF-1α regulates IL-1β and IL-17 in sarcoidosis

Research Article
  • Cited 12
  • Views 1,620
  • Annotations
Cite this article as: eLife 2019;8:e44519 doi: 10.7554/eLife.44519

Abstract

Sarcoidosis is a complex systemic granulomatous disease of unknown etiology characterized by the presence of activated macrophages and Th1/Th17 effector cells. Data mining of our RNA-Seq analysis of CD14+ monocytes showed enrichment for metabolic and hypoxia inducible factor (HIF) pathways in sarcoidosis. Further investigation revealed that sarcoidosis macrophages and monocytes exhibit higher protein levels for HIF-α isoforms, HIF-1β, and their transcriptional co-activator p300 as well as glucose transporter 1 (Glut1). In situ hybridization of sarcoidosis granulomatous lung tissues showed abundance of HIF-1α in the center of granulomas. The abundance of HIF isoforms was mechanistically linked to elevated IL-1β and IL-17 since targeted down regulation of HIF-1α via short interfering RNA or a HIF-1α inhibitor decreased their production. Pharmacological intervention using chloroquine, a lysosomal inhibitor, decreased lysosomal associated protein 2 (LAMP2) and HIF-1α levels and modified cytokine production. These data suggest that increased activity of HIF-α isoforms regulate Th1/Th17 mediated inflammation in sarcoidosis.

Article and author information

Author details

  1. Jaya Talreja

    Department of Internal Medicine, Wayne State University, Detroit, United States
    For correspondence
    fq0442@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Harvinder Talwar

    Department of Internal Medicine, Wayne State University, Detroit, United States
    For correspondence
    htalwar@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Bauerfeld

    Department of Pediatrics, Wayne State University, Detroit, United States
    For correspondence
    cbauerfe@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
  4. Lawrence I Grossman

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    lgrossman@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Kezhong Zhang

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    kzhang@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul Tranchida

    Department of Pathology, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lobelia Samavati

    Department of Internal Medicine, Wayne State University, Detroit, United States
    For correspondence
    ay6003@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3327-2585

Funding

National Heart, Lung, and Blood Institute (R01HL113508)

  • Lobelia Samavati

American Lung Association

  • Lobelia Samavati

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The Committee for Investigations Involving Human Subjects at Wayne State University approved the protocol for obtaining alveolar macrophages by bronchoalveolar lavage (BAL) and blood by phlebotomy from control subjects and patients with sarcoidosis.The IRB number for this study is 055208MP4E. Informed consent was obtained from all subjects enrolled for the study.

Reviewing Editor

  1. Jos WM van der Meer, Radboud University Medical Centre, Netherlands

Publication history

  1. Received: December 19, 2018
  2. Accepted: April 3, 2019
  3. Accepted Manuscript published: April 4, 2019 (version 1)
  4. Accepted Manuscript updated: May 1, 2019 (version 2)
  5. Version of Record published: May 8, 2019 (version 3)

Copyright

© 2019, Talreja et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,620
    Page views
  • 254
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Neuroscience
    Ekemini AU Riley, Randy Schekman
    Feature Article

    The Aligning Science Across Parkinson’s (ASAP) initiative was set up to improve understanding of the biology underlying the onset and progression of Parkinson’s disease. With an emphasis on open science and collaboration, we have assembled a research network led by nearly 100 investigators to explore the pathology of Parkinson’s disease, and this network will soon expand to include researchers working on relevant (dys)-functional neural circuits. We have also contributed to large-scale genetics and patient cohort initiatives related to the disease. We hope that these actions, and others planned for the future, will deepen our knowledge of the molecular mechanisms underlying the origin and evolution of Parkinson’s disease and, ultimately, contribute to the development of novel therapies.

    1. Immunology and Inflammation
    2. Medicine
    Benjamin A Turturice et al.
    Research Article Updated

    There are perinatal characteristics, such as gestational age, reproducibly associated with the risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation was observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil-specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil-specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.