Optical estimation of absolute membrane potential using fluorescence lifetime imaging

  1. Julia Rose Lazzari-Dean
  2. Anneliese M M Gest
  3. Evan W Miller  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

All cells maintain ionic gradients across their plasma membranes, producing transmembrane potentials (Vmem). Mounting evidence suggests a relationship between resting Vmem and the physiology of non-excitable cells with implications in diverse areas, including cancer, cellular differentiation, and body patterning. A lack of non-invasive methods to record absolute Vmem limits our understanding of this fundamental signal. To address this need, we developed a fluorescence lifetime-based approach (VF-FLIM) to visualize and optically quantify Vmem with single-cell resolution in mammalian cell culture. Using VF-FLIM, we report Vmem distributions over thousands of cells, a 100-fold improvement relative to electrophysiological approaches. In human carcinoma cells, we visualize the voltage response to growth factor stimulation, stably recording a 10-15 mV hyperpolarization over minutes. Using pharmacological inhibitors, we identify the source of the hyperpolarization as the Ca2+-activated K+ channel KCa3.1. The ability to optically quantify absolute Vmem with cellular resolution will allow a re-examination of its signaling roles.

Data availability

All data presented in the manuscript is available in the supporting / supplementary information.

Article and author information

Author details

  1. Julia Rose Lazzari-Dean

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2971-5379
  2. Anneliese M M Gest

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Evan W Miller

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    For correspondence
    evanwmiller@berkeley.edu
    Competing interests
    Evan W Miller, is listed as an inventor on a patent describing voltage-sensitive fluorophores. This patent (US20170315059) is owned by the Regents of the University of California.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6556-7679

Funding

National Science Foundation (GRFP)

  • Julia Rose Lazzari-Dean

National Institutes of Health (R35GM119855)

  • Evan W Miller

Alfred P. Sloan Foundation (FG-2016-6359)

  • Evan W Miller

March of Dimes Foundation (5-FY-16-65)

  • Evan W Miller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lawrence Cohen, Yale, United States

Publication history

  1. Received: February 14, 2019
  2. Accepted: September 16, 2019
  3. Accepted Manuscript published: September 23, 2019 (version 1)
  4. Version of Record published: October 25, 2019 (version 2)

Copyright

© 2019, Lazzari-Dean et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,734
    Page views
  • 928
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Rose Lazzari-Dean
  2. Anneliese M M Gest
  3. Evan W Miller
(2019)
Optical estimation of absolute membrane potential using fluorescence lifetime imaging
eLife 8:e44522.
https://doi.org/10.7554/eLife.44522
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Radhika A Varier, Theodora Sideri ... Folkert Jacobus van Werven
    Research Article

    N6-methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae, which occurs solely during early meiosis. Here we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3’end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Jacob M Winter, Heidi L Fresenius ... Jared Rutter
    Research Article

    The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.