Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

  1. Kerstin Klinkert
  2. Nicolas Levernier
  3. Peter Gross
  4. Christian Gentilli
  5. Lukas von Tobel
  6. Marie Pierron
  7. Coralie Busso
  8. Sarah Herrman
  9. Stephan W Grill
  10. Karsten Kruse
  11. Pierre Gönczy  Is a corresponding author
  1. Swiss Federal Institute of Technology, Switzerland
  2. University of Geneva, Switzerland
  3. Technische Universität Dresden, Germany

Abstract

How living systems break symmetry in an organized manner is a fundamental question in biology. In wild type Caenorhabditis elegans zygotes, symmetry breaking during anterior-posterior axis specification is guided by centrosomes, resulting in anterior-directed cortical flows and a single posterior PAR-2 domain. We uncover that C. elegans zygotes depleted of the Aurora A kinase AIR-1 or lacking centrosomes entirely usually establish two posterior PAR-2 domains, one at each pole. We demonstrate that AIR-1 prevents symmetry breaking early in the cell cycle, whereas centrosomal AIR-1 instructs polarity initiation thereafter. Using triangular microfabricated chambers, we establish that bipolarity of air-1(RNAi) embryos occurs effectively in a cell-shape and curvature-dependent manner. Furthermore, we develop an integrated physical description of symmetry breaking, wherein local PAR-2-dependent weakening of the actin cortex, together with mutual inhibition of anterior and posterior PAR proteins, provides a mechanism for spontaneous symmetry breaking without centrosomes.

Data availability

All data is available in the manuscript or the supplementary materials.

Article and author information

Author details

  1. Kerstin Klinkert

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolas Levernier

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter Gross

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Gentilli

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Lukas von Tobel

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Marie Pierron

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Coralie Busso

    Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah Herrman

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Stephan W Grill

    Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Karsten Kruse

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Pierre Gönczy

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    For correspondence
    pierre.gonczy@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6305-6883

Funding

European Molecular Biology Organization (ALTF 81-2017)

  • Kerstin Klinkert

European Molecular Biology Organization (ALTF 1426-2016)

  • Marie Pierron

Fondation Bettencourt Schueller

  • Nicolas Levernier

Swiss National Science Foundation (31003A_155942)

  • Pierre Gönczy

Swiss National Science Foundation (205321_175996)

  • Karsten Kruse

H2020 European Research Council (281903)

  • Stephan W Grill

H2020 European Research Council (742712)

  • Stephan W Grill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Klinkert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,475
    views
  • 536
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kerstin Klinkert
  2. Nicolas Levernier
  3. Peter Gross
  4. Christian Gentilli
  5. Lukas von Tobel
  6. Marie Pierron
  7. Coralie Busso
  8. Sarah Herrman
  9. Stephan W Grill
  10. Karsten Kruse
  11. Pierre Gönczy
(2019)
Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans
eLife 8:e44552.
https://doi.org/10.7554/eLife.44552

Share this article

https://doi.org/10.7554/eLife.44552

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.