Conformational and dynamical plasticity in substrate-binding proteins underlies selective transport in ABC importers

  1. Marijn de Boer
  2. Giorgos Gkouridis
  3. Ruslan Vietrov
  4. Stephanie L Begg
  5. Gea K Schuurman-Wolters
  6. Florence Husada
  7. Nikolaos Eleftheriadis
  8. Bert Poolman  Is a corresponding author
  9. Christopher A McDevitt  Is a corresponding author
  10. Thorben Cordes  Is a corresponding author
  1. University of Groningen, Netherlands
  2. KU Leuven, Belgium
  3. University of Melbourne, Australia
  4. Ludwig Maximilians-Universität München, Germany

Abstract

Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files. Source data files are available for smFRET histogrammes, representative smFRET time-traces and smFRET dwell-time histogrammes as shown in the manuscript. Primer sequences for created protein mutants are included.

Article and author information

Author details

  1. Marijn de Boer

    Molecular Microscopy Research Group, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Giorgos Gkouridis

    Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruslan Vietrov

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie L Begg

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Gea K Schuurman-Wolters

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Florence Husada

    Molecular Microscopy Research Group, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Nikolaos Eleftheriadis

    Molecular Microscopy Research Group, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Bert Poolman

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    For correspondence
    b.poolman@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1455-531X
  9. Christopher A McDevitt

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    For correspondence
    christopher.mcdevitt@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1596-4841
  10. Thorben Cordes

    Faculty of Biology, Ludwig Maximilians-Universität München, Planegg Martinsried, Germany
    For correspondence
    cordes@bio.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8598-5499

Funding

European Commission (638536)

  • Thorben Cordes

European Molecular Biology Organization (ALF 47-2012)

  • Giorgos Gkouridis

Deutsche Forschungsgemeinschaft (GRK2062/1 (C03))

  • Thorben Cordes

Deutsche Forschungsgemeinschaft (SFB863 (A13))

  • Thorben Cordes

National Health and Medical Research Council (1080784)

  • Christopher A McDevitt

National Health and Medical Research Council (1122582)

  • Christopher A McDevitt

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (722.012.012)

  • Giorgos Gkouridis

European Commission (670578)

  • Bert Poolman

Australian Research Council (DP170102102)

  • Christopher A McDevitt

Australian Research Council (FT170100006)

  • Christopher A McDevitt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Version history

  1. Received: December 21, 2018
  2. Accepted: March 22, 2019
  3. Accepted Manuscript published: March 22, 2019 (version 1)
  4. Version of Record published: April 5, 2019 (version 2)

Copyright

© 2019, de Boer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,403
    views
  • 672
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marijn de Boer
  2. Giorgos Gkouridis
  3. Ruslan Vietrov
  4. Stephanie L Begg
  5. Gea K Schuurman-Wolters
  6. Florence Husada
  7. Nikolaos Eleftheriadis
  8. Bert Poolman
  9. Christopher A McDevitt
  10. Thorben Cordes
(2019)
Conformational and dynamical plasticity in substrate-binding proteins underlies selective transport in ABC importers
eLife 8:e44652.
https://doi.org/10.7554/eLife.44652

Share this article

https://doi.org/10.7554/eLife.44652

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.