Conformational and dynamical plasticity in substrate-binding proteins underlies selective transport in ABC importers

  1. Marijn de Boer
  2. Giorgos Gkouridis
  3. Ruslan Vietrov
  4. Stephanie L Begg
  5. Gea K Schuurman-Wolters
  6. Florence Husada
  7. Nikolaos Eleftheriadis
  8. Bert Poolman  Is a corresponding author
  9. Christopher A McDevitt  Is a corresponding author
  10. Thorben Cordes  Is a corresponding author
  1. University of Groningen, Netherlands
  2. KU Leuven, Belgium
  3. University of Melbourne, Australia
  4. Ludwig Maximilians-Universität München, Germany

Abstract

Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files. Source data files are available for smFRET histogrammes, representative smFRET time-traces and smFRET dwell-time histogrammes as shown in the manuscript. Primer sequences for created protein mutants are included.

Article and author information

Author details

  1. Marijn de Boer

    Molecular Microscopy Research Group, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Giorgos Gkouridis

    Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruslan Vietrov

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie L Begg

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Gea K Schuurman-Wolters

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Florence Husada

    Molecular Microscopy Research Group, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Nikolaos Eleftheriadis

    Molecular Microscopy Research Group, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Bert Poolman

    Department of Biochemistry, University of Groningen, Groningen, Netherlands
    For correspondence
    b.poolman@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1455-531X
  9. Christopher A McDevitt

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    For correspondence
    christopher.mcdevitt@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1596-4841
  10. Thorben Cordes

    Faculty of Biology, Ludwig Maximilians-Universität München, Planegg Martinsried, Germany
    For correspondence
    cordes@bio.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8598-5499

Funding

European Commission (638536)

  • Thorben Cordes

European Molecular Biology Organization (ALF 47-2012)

  • Giorgos Gkouridis

Deutsche Forschungsgemeinschaft (GRK2062/1 (C03))

  • Thorben Cordes

Deutsche Forschungsgemeinschaft (SFB863 (A13))

  • Thorben Cordes

National Health and Medical Research Council (1080784)

  • Christopher A McDevitt

National Health and Medical Research Council (1122582)

  • Christopher A McDevitt

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (722.012.012)

  • Giorgos Gkouridis

European Commission (670578)

  • Bert Poolman

Australian Research Council (DP170102102)

  • Christopher A McDevitt

Australian Research Council (FT170100006)

  • Christopher A McDevitt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, de Boer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,540
    views
  • 684
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marijn de Boer
  2. Giorgos Gkouridis
  3. Ruslan Vietrov
  4. Stephanie L Begg
  5. Gea K Schuurman-Wolters
  6. Florence Husada
  7. Nikolaos Eleftheriadis
  8. Bert Poolman
  9. Christopher A McDevitt
  10. Thorben Cordes
(2019)
Conformational and dynamical plasticity in substrate-binding proteins underlies selective transport in ABC importers
eLife 8:e44652.
https://doi.org/10.7554/eLife.44652

Share this article

https://doi.org/10.7554/eLife.44652

Further reading

    1. Biochemistry and Chemical Biology
    Shu-Ting Zhang, Shi-Kai Deng ... Ning-Yi Zhou
    Research Article

    1-Naphthylamine (1NA), which is harmful to human and aquatic animals, has been used widely in the manufacturing of dyes, pesticides, and rubber antioxidants. Nevertheless, little is known about its environmental behavior and no bacteria have been reported to use it as the growth substrate. Herein, we describe a pathway for 1NA degradation in the isolate Pseudomonas sp. strain JS3066, determine the structure and mechanism of the enzyme NpaA1 that catalyzes the initial reaction, and reveal how the pathway evolved. From genetic and enzymatic analysis, a five gene-cluster encoding a dioxygenase system was determined to be responsible for the initial steps in 1NA degradation through glutamylation of 1NA. The γ-glutamylated 1NA was subsequently oxidized to 1,2-dihydroxynaphthalene which was further degraded by the well-established pathway of naphthalene degradation via catechol. A glutamine synthetase-like (GS-like) enzyme (NpaA1) initiates 1NA glutamylation, and this enzyme exhibits a broad substrate selectivity toward a variety of anilines and naphthylamine derivatives. Structural analysis revealed that the aromatic residues in the 1NA entry tunnel and the V201 site in the large substrate-binding pocket significantly influence NpaA1’s substrate preferences. The findings enhance understanding of degrading polycyclic aromatic amines, and will also enable the application of bioremediation at naphthylamine contaminated sites.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qiong He, Miao-Miao Zhao ... Jin-Kui Yang
    Research Article

    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.