Abstract

A common CNS architecture is observed in all chordates, from vertebrates to basal chordates like the ascidian Ciona. Ciona stands apart among chordates in having a complete larval connectome. Starting with visuomotor circuits predicted by the Ciona connectome, we used expression maps of neurotransmitter use with behavioral assays to identify two parallel visuomotor circuits that are responsive to different components of visual stimuli. The first circuit is characterized by glutamatergic photoreceptors and responds to the direction of light. These photoreceptors project to cholinergic motor neurons, via two tiers of cholinergic interneurons. The second circuit responds to changes in ambient light and mediates an escape response. This circuit uses GABAergic photoreceptors which project to GABAergic interneurons, and then to cholinergic interneurons. Our observations on the behavior of larvae either treated with a GABA receptor antagonist or carrying a mutation that eliminates photoreceptors indicate the second circuit is disinhibitory.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 5 and 6.

Article and author information

Author details

  1. Matthew J Kourakis

    Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cezar Borba

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Angela Zhang

    Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Erin Newman-Smith

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Priscilla Salas

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. B Manjunath

    Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. William C Smith

    Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    w_smith@ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6257-7695

Funding

National Institute of Neurological Disorders and Stroke (R01NS103774)

  • William C Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: December 28, 2018
  2. Accepted: April 11, 2019
  3. Accepted Manuscript published: April 18, 2019 (version 1)
  4. Version of Record published: May 3, 2019 (version 2)

Copyright

© 2019, Kourakis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,888
    views
  • 316
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew J Kourakis
  2. Cezar Borba
  3. Angela Zhang
  4. Erin Newman-Smith
  5. Priscilla Salas
  6. B Manjunath
  7. William C Smith
(2019)
Parallel visual circuitry in a basal chordate
eLife 8:e44753.
https://doi.org/10.7554/eLife.44753

Share this article

https://doi.org/10.7554/eLife.44753

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.