Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2α
Abstract
Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report cPLA2α C2-domain structure (2.2Å resolution) containing bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at locations previously reported for lipid-free C2-domain. One of these Ca2+ along with a third Ca2+ bridge the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm Tyr96 and Asn65 function in PC binding selectivity by C2-domain and regulation of cPLA2α activity. The differing DHPC-binding mode of cPLA2α C2-domain, compared to phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of lipid-binding mechanisms mediated by C2-domains.
Data availability
Diffraction data have been deposited in PDB under the accession code 6IEJ
Article and author information
Author details
Funding
National Institutes of Health (HL125353)
- Rhoderick E Brown
Ministry of Education, Culture, Sports, Science, and Technology
- Yoshinori Hirano
U.S. Department of Veterans Affairs (I BX001792)
- Charles E Chalfant
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Hirano et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,351
- views
-
- 433
- downloads
-
- 37
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 37
- citations for umbrella DOI https://doi.org/10.7554/eLife.44760