Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle

  1. Qingnian Goh
  2. Tajeong Song
  3. Michael J Petrany
  4. Alyssa AW Cramer
  5. Chengyi Sun
  6. Sakthivel Sadayappan
  7. Se-Jin Lee
  8. Douglas P Millay  Is a corresponding author
  1. Cincinnati Children's Hospital Medical Center, United States
  2. University of Cincinnati College of Medicine, United States
  3. The Jackson Laboratory, United States

Abstract

Skeletal muscle adapts to external stimuli such as increased work. Muscle progenitors (MPs) control muscle repair due to severe damage, but the role of MP fusion and associated myonuclear accretion during exercise are unclear. While we previously demonstrated that MP fusion is required for growth using a supra-physiological model (1), questions remained about the need for myonuclear accrual during muscle adaptation in a physiological setting. Here, we developed a high-intensity interval training (HIIT) protocol and assessed the importance of MP fusion. In 8 month-old mice, HIIT led to progressive myonuclear accretion throughout the protocol, and functional muscle hypertrophy. Abrogation of MP fusion at the onset of HIIT resulted in exercise intolerance and fibrosis. In contrast, ablation of MP fusion 4 weeks into HIIT, preserved exercise tolerance but attenuated hypertrophy. We conclude that myonuclear accretion is required for different facets of exercise-induced adaptive responses, impacting both muscle repair and hypertrophic growth.

Data availability

All data generated in this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Qingnian Goh

    Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tajeong Song

    Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael J Petrany

    Depatment of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alyssa AW Cramer

    Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2997-5066
  5. Chengyi Sun

    Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8500-1878
  6. Sakthivel Sadayappan

    Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Se-Jin Lee

    The Jackson Laboratory, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas P Millay

    Depatment of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    douglas.millay@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5188-0720

Funding

National Institutes of Health (R01AR068286)

  • Douglas P Millay

Pew Charitable Trusts

  • Douglas P Millay

National Institutes of Health (R01AG059605)

  • Douglas P Millay

National Institutes of Health (R01AR060636)

  • Se-Jin Lee

National Institutes of Health (R01HL130356)

  • Sakthivel Sadayappan

National Institutes of Health (R01HL105826)

  • Sakthivel Sadayappan

National Institutes of Health (R01AR067279)

  • Sakthivel Sadayappan

National Institutes of Health (RO1/R56HL139680)

  • Sakthivel Sadayappan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Cincinnati Children's Hospital Medical Center.

Copyright

© 2019, Goh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,923
    views
  • 741
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qingnian Goh
  2. Tajeong Song
  3. Michael J Petrany
  4. Alyssa AW Cramer
  5. Chengyi Sun
  6. Sakthivel Sadayappan
  7. Se-Jin Lee
  8. Douglas P Millay
(2019)
Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle
eLife 8:e44876.
https://doi.org/10.7554/eLife.44876

Share this article

https://doi.org/10.7554/eLife.44876

Further reading

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.