Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle

  1. Qingnian Goh
  2. Tajeong Song
  3. Michael J Petrany
  4. Alyssa AW Cramer
  5. Chengyi Sun
  6. Sakthivel Sadayappan
  7. Se-Jin Lee
  8. Douglas P Millay  Is a corresponding author
  1. Cincinnati Children's Hospital Medical Center, United States
  2. University of Cincinnati College of Medicine, United States
  3. The Jackson Laboratory, United States

Abstract

Skeletal muscle adapts to external stimuli such as increased work. Muscle progenitors (MPs) control muscle repair due to severe damage, but the role of MP fusion and associated myonuclear accretion during exercise are unclear. While we previously demonstrated that MP fusion is required for growth using a supra-physiological model (1), questions remained about the need for myonuclear accrual during muscle adaptation in a physiological setting. Here, we developed a high-intensity interval training (HIIT) protocol and assessed the importance of MP fusion. In 8 month-old mice, HIIT led to progressive myonuclear accretion throughout the protocol, and functional muscle hypertrophy. Abrogation of MP fusion at the onset of HIIT resulted in exercise intolerance and fibrosis. In contrast, ablation of MP fusion 4 weeks into HIIT, preserved exercise tolerance but attenuated hypertrophy. We conclude that myonuclear accretion is required for different facets of exercise-induced adaptive responses, impacting both muscle repair and hypertrophic growth.

Data availability

All data generated in this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Qingnian Goh

    Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tajeong Song

    Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael J Petrany

    Depatment of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alyssa AW Cramer

    Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2997-5066
  5. Chengyi Sun

    Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8500-1878
  6. Sakthivel Sadayappan

    Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Se-Jin Lee

    The Jackson Laboratory, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas P Millay

    Depatment of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    douglas.millay@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5188-0720

Funding

National Institutes of Health (R01AR068286)

  • Douglas P Millay

Pew Charitable Trusts

  • Douglas P Millay

National Institutes of Health (R01AG059605)

  • Douglas P Millay

National Institutes of Health (R01AR060636)

  • Se-Jin Lee

National Institutes of Health (R01HL130356)

  • Sakthivel Sadayappan

National Institutes of Health (R01HL105826)

  • Sakthivel Sadayappan

National Institutes of Health (R01AR067279)

  • Sakthivel Sadayappan

National Institutes of Health (RO1/R56HL139680)

  • Sakthivel Sadayappan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew Brack, University of California, San Francisco, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Cincinnati Children's Hospital Medical Center.

Version history

  1. Received: January 7, 2019
  2. Accepted: April 22, 2019
  3. Accepted Manuscript published: April 23, 2019 (version 1)
  4. Version of Record published: May 2, 2019 (version 2)
  5. Version of Record updated: May 14, 2019 (version 3)

Copyright

© 2019, Goh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,497
    Page views
  • 708
    Downloads
  • 60
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qingnian Goh
  2. Tajeong Song
  3. Michael J Petrany
  4. Alyssa AW Cramer
  5. Chengyi Sun
  6. Sakthivel Sadayappan
  7. Se-Jin Lee
  8. Douglas P Millay
(2019)
Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle
eLife 8:e44876.
https://doi.org/10.7554/eLife.44876

Share this article

https://doi.org/10.7554/eLife.44876

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Zian Liao, Suni Tang ... Martin Matzuk
    Research Article

    Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.