A ribosome assembly stress response regulates transcription to maintain proteome homeostasis

  1. Benjamin Albert
  2. Isabelle C Kos-Braun
  3. Anthony K Henras
  4. Christophe Dez
  5. Maria Paula Rueda
  6. Xu Zhang
  7. Olivier Gadal
  8. Martin Kos
  9. David Shore  Is a corresponding author
  1. University of Geneva, Switzerland
  2. Heidelberg University, Germany
  3. Université Paul Sabatier, France

Abstract

Ribosome biogenesis is a complex and energy-demanding process requiring tight coordination of ribosomal RNA (rRNA) and ribosomal protein (RP) production. Given the extremely high level of RP synthesis in rapidly growing cells, alteration of any step in the ribosome assembly process may impact growth by leading to proteotoxic stress. Although the transcription factor Hsf1 has emerged as a central regulator of proteostasis, how its activity is coordinated with ribosome biogenesis is unknown. Here we show that arrest of ribosome biogenesis in the budding yeast S. cerevisiae triggers rapid activation of a highly specific stress pathway that coordinately up-regulates Hsf1 target genes and down-regulates RP genes. Activation of Hsf1 target genes requires neo-synthesis of RPs, which accumulate in an insoluble fraction and presumably titrate a negative regulator of Hsf1, the Hsp70 chaperone. RP aggregation is also coincident with that of the RP gene activator Ifh1, a transcription factor that is rapidly released from RP gene promoters. Our data support a model in which the levels of newly-synthetized RPs, imported into the nucleus but not yet assembled into ribosomes, work to continuously balance Hsf1 and Ifh1 activity, thus guarding against proteotoxic stress during ribosome assembly.

Data availability

Sequencing data have been deposited in GEO under accession code GSE125226. Previously published data were used from Supplementary file 3 of Sung et al. 2016, eLife (https://elifesciences.org/articles/19105/figures#SD7-data) and Supplemental Table S3 from Sung et al. 2016, Mol Biol Cell (supp_E16-05-0290v1_mc-E16-05-0290-s06.xlsx).

The following data sets were generated

Article and author information

Author details

  1. Benjamin Albert

    Department of Molecular Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Isabelle C Kos-Braun

    Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony K Henras

    Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Christophe Dez

    Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Paula Rueda

    Department of Molecular Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Xu Zhang

    Department of Molecular Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Olivier Gadal

    Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9421-0831
  8. Martin Kos

    Biochemistry Centre (BZH), Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3337-9681
  9. David Shore

    Department of Molecular Biology, University of Geneva, Geneva, Switzerland
    For correspondence
    David.Shore@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9859-143X

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_170153)

  • David Shore

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Version history

  1. Received: January 9, 2019
  2. Accepted: May 23, 2019
  3. Accepted Manuscript published: May 24, 2019 (version 1)
  4. Version of Record published: June 17, 2019 (version 2)

Copyright

© 2019, Albert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,726
    views
  • 1,543
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Albert
  2. Isabelle C Kos-Braun
  3. Anthony K Henras
  4. Christophe Dez
  5. Maria Paula Rueda
  6. Xu Zhang
  7. Olivier Gadal
  8. Martin Kos
  9. David Shore
(2019)
A ribosome assembly stress response regulates transcription to maintain proteome homeostasis
eLife 8:e45002.
https://doi.org/10.7554/eLife.45002

Share this article

https://doi.org/10.7554/eLife.45002

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.