The genomes of polyextremophilic Cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions

  1. Alessandro W Rossoni
  2. Dana C Price
  3. Mark Seger
  4. Dagmar Lyska
  5. Peter Lammers
  6. Debashish Bhattacharya
  7. Andreas P M Weber  Is a corresponding author
  1. Heinrich Heine University, Germany
  2. Rutgers University, United States
  3. Arizona State University, United States

Abstract

The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.

Data availability

The genomic, chloroplast and mitochondrial sequences of the 10 novel genomes, as well as gene models, ESTs, protein sequences, and gene annotations are available at http://porphyra.rutgers.edu.Raw PacBio RSII reads, and also the genomic, chloroplast and mitochondrial sequences, have been submitted to the NCBI and are retrievable via BioProject ID PRJNA512382.

The following data sets were generated

Article and author information

Author details

  1. Alessandro W Rossoni

    Institute of Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Dana C Price

    Department of Plant Biology, Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark Seger

    Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dagmar Lyska

    Institute of Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Lammers

    Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Debashish Bhattacharya

    Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Andreas P M Weber

    Institute of Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
    For correspondence
    andreas.weber@uni-duesseldorf.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0970-4672

Funding

Deutsche Forschungsgemeinschaft (EXC 1028)

  • Andreas P M Weber

Heinrich-Heine-Universität Düsseldorf

  • Andreas P M Weber

Deutsche Forschungsgemeinschaft (WE 2231/21-1)

  • Andreas P M Weber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Rossoni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,489
    views
  • 505
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessandro W Rossoni
  2. Dana C Price
  3. Mark Seger
  4. Dagmar Lyska
  5. Peter Lammers
  6. Debashish Bhattacharya
  7. Andreas P M Weber
(2019)
The genomes of polyextremophilic Cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions
eLife 8:e45017.
https://doi.org/10.7554/eLife.45017

Share this article

https://doi.org/10.7554/eLife.45017

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.