A FRET sensor of C-terminal movement reveals VRAC activation by plasma membrane DAG signaling rather than ionic strength

  1. Benjamin König
  2. Yuchen Hao
  3. Sophia Schwartz
  4. Andrew J R Plested
  5. Tobias Stauber  Is a corresponding author
  1. Freie Universität Berlin, Germany
  2. Humboldt Universität zu Berlin, Germany

Abstract

Volume-regulated anion channels (VRACs) are central to cell volume regulation. Recently identified as hetero-hexamers formed by LRRC8 proteins, their activation mechanism remains elusive. Here we measured Förster resonance energy transfer (FRET) between fluorescent proteins fused to the C-termini of LRRC8 subunits. Inter-subunit FRET from LRRC8 complexes tracked VRAC activation. With patch-clamp fluorometry, we confirmed that the cytoplasmic domains rearrange during VRAC opening. With these FRET reporters, we determined VRAC activation, non-invasively, in live cells and their subcompartments. Reduced intracellular ionic strength did not directly activate VRACs, and VRACs were not activated on endomembranes. Instead, pharmacological manipulation of diacylglycerol (DAG), and protein kinase D (PKD) activity, activated or inhibited plasma membrane-localized VRACs. Finally, we resolved previous contradictory reports concerning VRAC activation, using FRET to detect robust activation by PMA that was absent during whole-cell patch clamp. Overall, non-invasive VRAC measurement by FRET is an essential tool for unravelling its activation mechanism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Benjamin König

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuchen Hao

    Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sophia Schwartz

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew J R Plested

    Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6062-0832
  5. Tobias Stauber

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    For correspondence
    tobias.stauber@fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0727-6109

Funding

Bundesministerium für Bildung und Forschung (031A314)

  • Tobias Stauber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Publication history

  1. Received: February 14, 2019
  2. Accepted: June 14, 2019
  3. Accepted Manuscript published: June 18, 2019 (version 1)
  4. Version of Record published: June 27, 2019 (version 2)

Copyright

© 2019, König et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,561
    Page views
  • 428
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin König
  2. Yuchen Hao
  3. Sophia Schwartz
  4. Andrew J R Plested
  5. Tobias Stauber
(2019)
A FRET sensor of C-terminal movement reveals VRAC activation by plasma membrane DAG signaling rather than ionic strength
eLife 8:e45421.
https://doi.org/10.7554/eLife.45421

Further reading

    1. Cell Biology
    2. Neuroscience
    Sotaro Ichinose, Yoshihiro Susuki ... Hirohide Iwasaki
    Research Article

    Neurons form dense neural circuits by connecting to each other via synapses and exchange information through synaptic receptors to sustain brain activities. Excitatory postsynapses form and mature on spines composed predominantly of actin, while inhibitory synapses are formed directly on the shafts of dendrites where both actin and microtubules (MTs) are present. Thus, it is the accumulation of specific proteins that characterizes inhibitory synapses. In this study, we explored the mechanisms that enable efficient protein accumulation at inhibitory postsynapse. We found that some inhibitory synapses function to recruit the plus end of MTs. One of the synaptic organizers, Teneurin-2 (TEN2), tends to localize to such MT-rich synapses and recruits MTs to inhibitory postsynapses via interaction with MT plus-end tracking proteins EBs. This recruitment mechanism provides a platform for the exocytosis of GABAA receptors. These regulatory mechanisms could lead to a better understanding of the pathogenesis of disorders such as schizophrenia and autism, which are caused by excitatory/inhibitory (E/I) imbalances during synaptogenesis.

    1. Cell Biology
    Qin Zou, Rong Yuan ... Yanzhi Jiang
    Research Article

    Different anatomical locations of the body skin show differences in their gene expression patterns depending on different origins, and the inherent heterogeneous information can be maintained in adults. However, highly resolvable cellular specialization is less well characterized in different anatomical regions of the skin. Pig is regarded as an excellent model animal for human skin research in view of its similar physiology to human. In this study, single-cell RNA sequencing was performed on pig skin tissues from six different anatomical regions of Chenghua (CH) pigs, with a superior skin thickness trait, and the back site of large white (LW) pigs. We obtained 233,715 cells, representing seven cell types, among which we primarily characterized the heterogeneity of the top three cell types, including smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts (FBs). Then, we further identified several subtypes of SMCs, ECs, and FBs, and discovered the expression patterns of site-specific genes involved in some important pathways such as the immune response and extracellular matrix (ECM) synthesis in different anatomical regions. By comparing differentially expressed genes of skin FBs among different anatomical regions, we considered TNN, COL11A1, and INHBA as candidate genes for facilitating ECM accumulation. These findings of heterogeneity in the main skin cell types from different anatomical sites will contribute to a better understanding of inherent skin information and place the potential focus on skin generation, transmission, and transplantation, paving the foundation for human skin priming.