Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins

  1. Haiyang Zhang
  2. Meghan V Petrie
  3. Yiwei He
  4. Jared M Peace
  5. Irene E Chiolo
  6. Oscar M Aparicio  Is a corresponding author
  1. University of Southern California, United States

Abstract

Chromosomal DNA elements are organized into spatial domains within the eukaryotic nucleus. Sites undergoing DNA replication, high-level transcription, and repair of double-strand breaks coalesce into foci, although the significance and mechanisms giving rise to these dynamic structures are poorly understood. In S. cerevisiae, replication origins occupy characteristic subnuclear localizations that anticipate their initiation timing during S phase. Here, we link localization of replication origins in G1 phase with Fkh1 activity, which is required for their early replication timing. Using a Fkh1-dependent origin relocalization assay, we determine that execution of Dbf4-dependent kinase function, including Cdc45 loading, results in dynamic relocalization of a replication origin from the nuclear periphery to the interior in G1 phase. Origin mobility increases substantially with Fkh1-driven relocalization. These findings provide novel molecular insight into the mechanisms that govern dynamics and spatial organization of DNA replication origins and possibly other functional DNA elements.

Data availability

Imaging quantification, statistical analysis, sequencing data and MatLab scripts have been deposited in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Haiyang Zhang

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Meghan V Petrie

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yiwei He

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jared M Peace

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Irene E Chiolo

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3080-550X
  6. Oscar M Aparicio

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    For correspondence
    oaparici@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5591-0277

Funding

National Institute of General Medical Sciences (R01-GMS 05494)

  • Oscar M Aparicio

National Institute of General Medical Sciences (R01-GMS 117376)

  • Irene E Chiolo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,387
    views
  • 228
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.45512

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.