Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins

  1. Haiyang Zhang
  2. Meghan V Petrie
  3. Yiwei He
  4. Jared M Peace
  5. Irene E Chiolo
  6. Oscar M Aparicio  Is a corresponding author
  1. University of Southern California, United States

Abstract

Chromosomal DNA elements are organized into spatial domains within the eukaryotic nucleus. Sites undergoing DNA replication, high-level transcription, and repair of double-strand breaks coalesce into foci, although the significance and mechanisms giving rise to these dynamic structures are poorly understood. In S. cerevisiae, replication origins occupy characteristic subnuclear localizations that anticipate their initiation timing during S phase. Here, we link localization of replication origins in G1 phase with Fkh1 activity, which is required for their early replication timing. Using a Fkh1-dependent origin relocalization assay, we determine that execution of Dbf4-dependent kinase function, including Cdc45 loading, results in dynamic relocalization of a replication origin from the nuclear periphery to the interior in G1 phase. Origin mobility increases substantially with Fkh1-driven relocalization. These findings provide novel molecular insight into the mechanisms that govern dynamics and spatial organization of DNA replication origins and possibly other functional DNA elements.

Data availability

Imaging quantification, statistical analysis, sequencing data and MatLab scripts have been deposited in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Haiyang Zhang

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Meghan V Petrie

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yiwei He

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jared M Peace

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Irene E Chiolo

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3080-550X
  6. Oscar M Aparicio

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    For correspondence
    oaparici@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5591-0277

Funding

National Institute of General Medical Sciences (R01-GMS 05494)

  • Oscar M Aparicio

National Institute of General Medical Sciences (R01-GMS 117376)

  • Irene E Chiolo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruce Stillman, Cold Spring Harbor Laboratory, United States

Version history

  1. Received: January 25, 2019
  2. Accepted: May 13, 2019
  3. Accepted Manuscript published: May 14, 2019 (version 1)
  4. Version of Record published: May 23, 2019 (version 2)

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,321
    Page views
  • 222
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haiyang Zhang
  2. Meghan V Petrie
  3. Yiwei He
  4. Jared M Peace
  5. Irene E Chiolo
  6. Oscar M Aparicio
(2019)
Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins
eLife 8:e45512.
https://doi.org/10.7554/eLife.45512

Share this article

https://doi.org/10.7554/eLife.45512

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.