Coupling adaptive molecular evolution to phylodynamics using fitness-dependent birth-death models

  1. David A Rasmussen  Is a corresponding author
  2. Tania Stadler
  1. North Carolina State University, United States
  2. ETH Zurich, Switzerland

Abstract

Beneficial and deleterious mutations cause the fitness of lineages to vary across a phylogeny and thereby shape its branching structure. While standard phylogenetic models do not allow mutations to feedback and shape trees, birth-death models can account for this feedback by letting the fitness of lineages depend on their type. To date, these multi-type birth-death models have only been applied to cases where a lineage's fitness is determined by a single character state. We extend these models to track sequence evolution at multiple sites. This approach remains computationally tractable by tracking the genotype and fitness of lineages probabilistically in an approximate manner. Although approximate, we show that we can accurately estimate the fitness of lineages and site-specific mutational fitness effects from phylogenies. We apply this approach to estimate the population-level fitness effects of mutations in Ebola and influenza virus, and compare our estimates with in vitro fitness measurements for these mutations.

Data availability

All data and code required to reproduce our Ebola analysis in its entirety is available at https://github.com/davidrasm/Lumiere/tree/master/ebola. The sequence alignment along with the timecalibrated molecular phylogeny we used for our analysis were downloaded from https://github.com/ebov/space-time/tree/master/Data. Dataset S3 of Lee et al. 2018 was downloaded from https://www.pnas.org/highwire/filestream/822898/field_highwire_adjunct_files/3/pnas.1806133115.sd03.xlsx.

Article and author information

Author details

  1. David A Rasmussen

    Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, 27607, United States
    For correspondence
    drasmus@ncsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9457-7561
  2. Tania Stadler

    Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Seventh Framework Programme (European Research Commission)

  • Tania Stadler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aleksandra M Walczak, École Normale Supérieure, France

Version history

  1. Received: January 27, 2019
  2. Accepted: July 26, 2019
  3. Accepted Manuscript published: August 14, 2019 (version 1)
  4. Accepted Manuscript updated: August 15, 2019 (version 2)
  5. Version of Record published: August 29, 2019 (version 3)

Copyright

© 2019, Rasmussen & Stadler

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,693
    views
  • 387
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David A Rasmussen
  2. Tania Stadler
(2019)
Coupling adaptive molecular evolution to phylodynamics using fitness-dependent birth-death models
eLife 8:e45562.
https://doi.org/10.7554/eLife.45562

Share this article

https://doi.org/10.7554/eLife.45562

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.